www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Der euklidische Raum
Der euklidische Raum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Der euklidische Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:12 Mi 30.10.2013
Autor: piriyaie

Aufgabe
Definition:

a) [mm] \IB [/mm] := [mm] \sigma(H) [/mm] heißt "das Erzeugnissystem der Borellmengen" oder "das Borellsystem" über [mm] \Omega=\IR [/mm]

b) [mm] H_{k} [/mm] := { [mm] (a_{1}, b_{1}) \times [/mm] ... [mm] \times (a_{k}, b_{k}) [/mm] : [mm] a_{j} \le b_{j} \forall [/mm] j= 1, ..., k } heißt das System der beschränkten halboffenen Quader über [mm] \Omega=\IR^{k} [/mm]



Hallo,

ich verstehe die obige definition nicht.

also [mm] \IB [/mm] ist ja definiert als [mm] \sigma(H). [/mm]

Und dieses [mm] H_{k} [/mm] ist damit das H von [mm] \sigma [/mm] gemeint? Warum gilt dann nicht [mm] \IB:= \sigma (H_{k})??? [/mm]

dann ist ja dieses [mm] H_{k} [/mm] so ein Kreutzprodukt. Aber was sind diese [mm] a_{j} [/mm] und [mm] b_{j} [/mm] ??? Sind die [mm] \in \IR??? [/mm]

Es wäre super wenn mir jemand das alles genauer erklären könnte, sodass ich es verstehe.

Danke.

Grüße
Ali

        
Bezug
Der euklidische Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Mi 30.10.2013
Autor: tobit09

Hallo Ali!


> Definition:

>

> a) [mm]\IB[/mm] := [mm]\sigma(H)[/mm] heißt "das Erzeugnissystem der
> Borellmengen" oder "das Borellsystem" über [mm]\Omega=\IR[/mm]

Wie habt ihr denn die Menge [mm]H[/mm] definiert?
Die Menge aller halboffenen Intervalle reeller Zahlen der Form [mm][a,b)[/mm] mit [mm]a\le b[/mm]?
Oder die Menge aller halboffenen Intervalle reeller Zahlen der Form [mm](a,b][/mm] mit [mm]a\le b[/mm]?


> b) [mm]H_{k}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= $\{$ [mm](a_{1}, b_{1}) \times[/mm] ... [mm]\times (a_{k}, b_{k})[/mm]

> : [mm]a_{j} \le b_{j} \forall[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

j= 1, ..., k $\}$ heißt das System

> der beschränkten halboffenen Quader über [mm]\Omega=\IR^{k}[/mm]

Hier soll es wohl

[mm]H_k:=\{[a_1,b_1)\times\ldots\times[a_k,b_k)\;|\;a_j\le b_j\forall j=1,\ldots,k\}[/mm]

oder

[mm]H_k:=\{(a_1,b_1]\times\ldots\times(a_k,b_k]\;|\;a_j\le b_j\forall j=1,\ldots,k\}[/mm]

heißen.

Sonst würde man die enthaltenen Quader nicht HALBoffen nennen.



> ich verstehe die obige definition nicht.

>

> also [mm]\IB[/mm] ist ja definiert als [mm]\sigma(H).[/mm]

Genau. [mm]\IB[/mm] ist also die kleinste Sigma-Algebra über [mm]\IR[/mm], die alle Mengen aus [mm]H[/mm] enthält.

(Für die Anschauung: [mm]\IB[/mm] enthält so ziemlich alle Teilmengen von [mm]\IR[/mm], die sich explizit hinschreiben lassen. Aber das ist natürlich keine präzise mathematische Aussage.)


> Und dieses [mm]H_{k}[/mm] ist damit das H von [mm]\sigma[/mm] gemeint?

Nein. Wenn meine obigen Vermutungen stimmen, gilt [mm]H=H_1[/mm].

Bei [mm]H_k[/mm] kann hingegen [mm]k[/mm] eine beliebige natürliche Zahl sein.


> Warum
> gilt dann nicht [mm]\IB:= \sigma (H_{k})???[/mm]

Weil [mm]\IB[/mm] eine Sigma-Algebra über [mm]\IR[/mm], nicht über [mm]\IR^k[/mm] sein soll.

Üblicherweise definiert man analog [mm]\IB_k:=\sigma(H_k)[/mm] für beliebige natürliche Zahlen [mm]k[/mm] als die Borelsche Sigma-Algebra über [mm]\Omega=\IR^k[/mm].


> dann ist ja dieses [mm]H_{k}[/mm] so ein Kreutzprodukt. Aber was
> sind diese [mm]a_{j}[/mm] und [mm]b_{j}[/mm] ??? Sind die [mm]\in \IR???[/mm]

Ja, so ist das gemeint.

Im Falle $k=1$ sind alle Mengen aus [mm] $H_k$ [/mm] einfach Intervalle reeller Zahlen.
Im Falle [mm]k=2[/mm] lassen sich die Mengen aus [mm]H_k[/mm] als Rechtecke der Ebene veranschaulichen.
Im Falle [mm]k=3[/mm] lassen sich die Mengen aus [mm]H_k[/mm] als Quader im gewöhnlichen dreidimensionalen Raum veranschaulichen.


Viele Grüße
Tobias

Bezug
                
Bezug
Der euklidische Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Mi 30.10.2013
Autor: piriyaie

Danke Tobi.

> Hallo Ali!
>  
>
> > Definition:
>  >
>  > a) [mm]\IB[/mm] := [mm]\sigma(H)[/mm] heißt "das Erzeugnissystem der

>  > Borellmengen" oder "das Borellsystem" über [mm]\Omega=\IR[/mm]

>  Wie habt ihr denn die Menge [mm]H[/mm] definiert?
>  Die Menge aller halboffenen Intervalle reeller Zahlen der
> Form [mm][a,b)[/mm] mit [mm]a\le b[/mm]?
>  Oder die Menge aller halboffenen
> Intervalle reeller Zahlen der Form [mm](a,b][/mm] mit [mm]a\le b[/mm]?
>  

H ist so definiert:

H= { (a, b] : a, b [mm] \in \IR [/mm] }

Also die Menge aller halboffenen Intervalle reeller Zahlen der Form (a, b] mit a [mm] \le [/mm] b.
Ich gehe jetzt induktiv davon aus, dass a [mm] \le [/mm] b gilt.
Dies wurde aber nirgendswo erwähnt.

>
> > b) [mm]H_{k}[/mm] := [mm]\{[/mm] [mm](a_{1}, b_{1}) \times[/mm] ... [mm]\times (a_{k}, b_{k})[/mm]
>  
> > : [mm]a_{j} \le b_{j} \forall[/mm] j= 1, ..., k [mm]\}[/mm] heißt das
> System
>  > der beschränkten halboffenen Quader über

> [mm]\Omega=\IR^{k}[/mm]
>  Hier soll es wohl
>  
> [mm]H_k:=\{[a_1,b_1)\times\ldots\times[a_k,b_k)\;|\;a_j\le b_j\forall j=1,\ldots,k\}[/mm]
>  
> oder
>  
> [mm]H_k:=\{(a_1,b_1]\times\ldots\times(a_k,b_k]\;|\;a_j\le b_j\forall j=1,\ldots,k\}[/mm]
>  
> heißen.
>  
> Sonst würde man die enthaltenen Quader nicht HALBoffen
> nennen.

Also letzteres...

>  
>
>
> > ich verstehe die obige definition nicht.
>  >
>  > also [mm]\IB[/mm] ist ja definiert als [mm]\sigma(H).[/mm]

>  Genau. [mm]\IB[/mm] ist also die kleinste Sigma-Algebra über [mm]\IR[/mm],
> die alle Mengen aus [mm]H[/mm] enthält.
>  
> (Für die Anschauung: [mm]\IB[/mm] enthält so ziemlich alle
> Teilmengen von [mm]\IR[/mm], die sich explizit hinschreiben lassen.
> Aber das ist natürlich keine präzise mathematische
> Aussage.)

Also ist [mm] \IB [/mm] ein Ereignissystem???

>  
>
> > Und dieses [mm]H_{k}[/mm] ist damit das H von [mm]\sigma[/mm] gemeint?
>  Nein. Wenn meine obigen Vermutungen stimmen, gilt [mm]H=H_1[/mm].
>  
> Bei [mm]H_k[/mm] kann hingegen [mm]k[/mm] eine beliebige natürliche Zahl
> sein.
>  
>
> > Warum
>  > gilt dann nicht [mm]\IB:= \sigma (H_{k})???[/mm]

>  Weil [mm]\IB[/mm] eine
> Sigma-Algebra über [mm]\IR[/mm], nicht über [mm]\IR^k[/mm] sein soll.
>  
> Üblicherweise definiert man analog [mm]\IB_k:=\sigma(H_k)[/mm] für
> beliebige natürliche Zahlen [mm]k[/mm] als die Borelsche
> Sigma-Algebra über [mm]\Omega=\IR^k[/mm].
>  
>
> > dann ist ja dieses [mm]H_{k}[/mm] so ein Kreutzprodukt. Aber was
>  > sind diese [mm]a_{j}[/mm] und [mm]b_{j}[/mm] ??? Sind die [mm]\in \IR???[/mm]

>  Ja,
> so ist das gemeint.
>  
> Im Falle [mm]k=1[/mm] sind alle Mengen aus [mm]H_k[/mm] einfach Intervalle
> reeller Zahlen.
>  Im Falle [mm]k=2[/mm] lassen sich die Mengen aus [mm]H_k[/mm] als Rechtecke
> der Ebene veranschaulichen.
>  Im Falle [mm]k=3[/mm] lassen sich die Mengen aus [mm]H_k[/mm] als Quader im
> gewöhnlichen dreidimensionalen Raum veranschaulichen.

Kann k>3 sein???

>  
>
> Viele Grüße
>  Tobias

Danke

Grüße
Ali


Bezug
                        
Bezug
Der euklidische Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mi 30.10.2013
Autor: fred97


> Danke Tobi.
>  
> > Hallo Ali!
>  >  
> >
> > > Definition:
>  >  >
>  >  > a) [mm]\IB[/mm] := [mm]\sigma(H)[/mm] heißt "das Erzeugnissystem der

>  >  > Borellmengen" oder "das Borellsystem" über

> [mm]\Omega=\IR[/mm]
>  >  Wie habt ihr denn die Menge [mm]H[/mm] definiert?
>  >  Die Menge aller halboffenen Intervalle reeller Zahlen
> der
> > Form [mm][a,b)[/mm] mit [mm]a\le b[/mm]?
>  >  Oder die Menge aller
> halboffenen
> > Intervalle reeller Zahlen der Form [mm](a,b][/mm] mit [mm]a\le b[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

?

>  >  
>
> H ist so definiert:
>  
> H= { (a, b] : a, b [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> Also die Menge aller halboffenen Intervalle reeller Zahlen
> der Form (a, b] mit a [mm]\le[/mm] b.
>  Ich gehe jetzt induktiv davon aus, dass a [mm]\le[/mm] b gilt.

Hä ? Was meinst Du damit ?


>  Dies wurde aber nirgendswo erwähnt.
>  
> >
> > > b) [mm]H_{k}[/mm] := [mm]\{[/mm] [mm](a_{1}, b_{1}) \times[/mm] ... [mm]\times (a_{k}, b_{k})[/mm]
>  
> >  

> > > : [mm]a_{j} \le b_{j} \forall[/mm] j= 1, ..., k [mm]\}[/mm] heißt das
> > System
>  >  > der beschränkten halboffenen Quader über

> > [mm]\Omega=\IR^{k}[/mm]
>  >  Hier soll es wohl
>  >  
> > [mm]H_k:=\{[a_1,b_1)\times\ldots\times[a_k,b_k)\;|\;a_j\le b_j\forall j=1,\ldots,k\}[/mm]
>  
> >  

> > oder
>  >  
> > [mm]H_k:=\{(a_1,b_1]\times\ldots\times(a_k,b_k]\;|\;a_j\le b_j\forall j=1,\ldots,k\}[/mm]
>  
> >  

> > heißen.
>  >  
> > Sonst würde man die enthaltenen Quader nicht HALBoffen
> > nennen.
>  
> Also letzteres...
>  
> >  

> >
> >
> > > ich verstehe die obige definition nicht.
>  >  >
>  >  > also [mm]\IB[/mm] ist ja definiert als [mm]\sigma(H).[/mm]

>  >  Genau. [mm]\IB[/mm] ist also die kleinste Sigma-Algebra über
> [mm]\IR[/mm],
> > die alle Mengen aus [mm]H[/mm] enthält.
>  >  
> > (Für die Anschauung: [mm]\IB[/mm] enthält so ziemlich alle
> > Teilmengen von [mm]\IR[/mm], die sich explizit hinschreiben lassen.
> > Aber das ist natürlich keine präzise mathematische
> > Aussage.)
>  
> Also ist [mm]\IB[/mm] ein Ereignissystem???


Ja, eine [mm] \sigma- [/mm] Algebra.


>  
> >  

> >
> > > Und dieses [mm]H_{k}[/mm] ist damit das H von [mm]\sigma[/mm] gemeint?
>  >  Nein. Wenn meine obigen Vermutungen stimmen, gilt
> [mm]H=H_1[/mm].
>  >  
> > Bei [mm]H_k[/mm] kann hingegen [mm]k[/mm] eine beliebige natürliche Zahl
> > sein.
>  >  
> >
> > > Warum
>  >  > gilt dann nicht [mm]\IB:= \sigma (H_{k})???[/mm]

>  >  Weil [mm]\IB[/mm]
> eine
> > Sigma-Algebra über [mm]\IR[/mm], nicht über [mm]\IR^k[/mm] sein soll.
>  >  
> > Üblicherweise definiert man analog [mm]\IB_k:=\sigma(H_k)[/mm] für
> > beliebige natürliche Zahlen [mm]k[/mm] als die Borelsche
> > Sigma-Algebra über [mm]\Omega=\IR^k[/mm].
>  >  
> >
> > > dann ist ja dieses [mm]H_{k}[/mm] so ein Kreutzprodukt. Aber was
>  >  > sind diese [mm]a_{j}[/mm] und [mm]b_{j}[/mm] ??? Sind die [mm]\in \IR???[/mm]

>  >

>  Ja,
> > so ist das gemeint.
>  >  
> > Im Falle [mm]k=1[/mm] sind alle Mengen aus [mm]H_k[/mm] einfach Intervalle
> > reeller Zahlen.
>  >  Im Falle [mm]k=2[/mm] lassen sich die Mengen aus [mm]H_k[/mm] als
> Rechtecke
> > der Ebene veranschaulichen.
>  >  Im Falle [mm]k=3[/mm] lassen sich die Mengen aus [mm]H_k[/mm] als Quader
> im
> > gewöhnlichen dreidimensionalen Raum veranschaulichen.
>  
> Kann k>3 sein???

Natürlich.

FRED

>  >  
> >
> > Viele Grüße
>  >  Tobias
>
> Danke
>  
> Grüße
>  Ali
>  


Bezug
                                
Bezug
Der euklidische Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mi 30.10.2013
Autor: piriyaie

Hallo FRED,

so ist H definiert:

H= { (a, b] : a, b [mm] \in \IR [/mm] }

Das ist also die Menge aller halboffenen Intervalle reeller Zahlen der Form (a, b] mit a [mm] \le [/mm] b.

Oder habe ich das falsch verstanden???

Bei mir im Skript steht außerdem nirgendswo, dass a [mm] \le [/mm] b gilt!
Gilt das überhaupt???

DAnke.

Grüße
Ali

Bezug
                                        
Bezug
Der euklidische Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 30.10.2013
Autor: tobit09


> so ist H definiert:

>

> H= [mm]\{[/mm] (a, b] : a, b [mm]\in \IR[/mm] [mm]\}[/mm]

>

> Das ist also die Menge aller halboffenen Intervalle reeller
> Zahlen der Form (a, b] mit a [mm]\le[/mm] b.

>

> Oder habe ich das falsch verstanden???

>

> Bei mir im Skript steht außerdem nirgendswo, dass a [mm]\le[/mm] b
> gilt!
> Gilt das überhaupt???

Es gilt sowieso

    [mm]\{(a,b]\;|\;a,b\in\IR\}=\{(a,b]\;|\;a,b\in\IR\text{ mit }a\le b\}[/mm].

Also ist es für die Definition von [mm]H[/mm] egal, ob man [mm]a\le b[/mm] fordert oder nicht.

(Es gilt

     [mm](a,b]=\emptyset=(0,0][/mm]

für alle [mm]a,b\in\IR[/mm] mit [mm]a>b[/mm].)

Bezug
                                                
Bezug
Der euklidische Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Mi 30.10.2013
Autor: piriyaie

supi. Danke für eure Hilfe :-D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de