Determinante berechnen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:43 Mi 25.01.2012 | Autor: | fernweh |
Aufgabe | Seien $A$, $B$ reguläre $4 [mm] \times [/mm] 4$-Matrizen und [mm] $I_4$ [/mm] die [mm] $4\times4$-Einheitsmatrix. [/mm] Berechnen Sie
[mm] $\det(BA^T B^{-1})\det((B^{-1})^T A^{-1} (BA^T)^T [/mm] + [mm] I_4)\det(A^{-1})$ [/mm] |
Hallo zusammen
Ohne gross Über den Sinn dieser Aufgabe zu spekulieren - kann jemand hier kurz drüber schauen, ob das so stimmt?
[mm] $\det(BA^T B^{-1})\det((B^{-1})^T A^{-1} (BA^T)^T [/mm] + [mm] I_4)\det(A^{-1}) [/mm]
= [mm] \det(BA^T B^{-1})\det((B^{-1})^T A^{-1} AB^T [/mm] + [mm] I_4)\det(A^{-1}) [/mm]
= [mm] \det(BA^T B^{-1})\det((B^{-1})^T B^T [/mm] + [mm] I_4)\det(A^{-1}) [/mm]
= [mm] \det(BA^T B^{-1})\det((BB^{-1})^T+ I_4)\det(A^{-1}) [/mm]
= [mm] \det(BA^T B^{-1})\det(I_4+ I_4)\det(A^{-1}) [/mm]
= [mm] 2\det(BA^T B^{-1})\det(A^{-1}) [/mm] = [mm] 2\det(BA^T B^{-1}A^{-1}) [/mm] $
Stimmt das? Oder lässt sich das noch weiter vereinfachen?
Viele Grüsse
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:51 Mi 25.01.2012 | Autor: | fred97 |
> Seien [mm]A[/mm], [mm]B[/mm] reguläre [mm]4 \times 4[/mm]-Matrizen und [mm]I_4[/mm] die
> [mm]4\times4[/mm]-Einheitsmatrix. Berechnen Sie
> [mm]\det(BA^T B^{-1})\det((B^{-1})^T A^{-1} (BA^T)^T + I_4)\det(A^{-1})[/mm]
>
> Hallo zusammen
>
> Ohne gross Über den Sinn dieser Aufgabe zu spekulieren -
> kann jemand hier kurz drüber schauen, ob das so stimmt?
>
> [mm]$\det(BA^T B^{-1})\det((B^{-1})^T A^{-1} (BA^T)^T[/mm] +
> [mm]I_4)\det(A^{-1})[/mm]
> = [mm]\det(BA^T B^{-1})\det((B^{-1})^T A^{-1} AB^T[/mm] +
> [mm]I_4)\det(A^{-1})[/mm]
> = [mm]\det(BA^T B^{-1})\det((B^{-1})^T B^T[/mm] + [mm]I_4)\det(A^{-1})[/mm]
> = [mm]\det(BA^T B^{-1})\det((BB^{-1})^T+ I_4)\det(A^{-1})[/mm]
> = [mm]\det(BA^T B^{-1})\det(I_4+ I_4)\det(A^{-1})[/mm]
> = [mm]2\det(BA^T B^{-1})\det(A^{-1})[/mm] = [mm]2\det(BA^T B^{-1}A^{-1})[/mm]
> $
>
> Stimmt das?
Ja
> Oder lässt sich das noch weiter vereinfachen?
Ja, wenn Du folgende Regeln verwendest:
det(AB)=det(A)*det(B);
[mm] det(A^T)=det(A);
[/mm]
[mm] det(A^{-1})=(det(A))^{-1} [/mm] ( wenn A inv. ist)
FRED
>
> Viele Grüsse
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:02 Mi 25.01.2012 | Autor: | fernweh |
Hallo Fred
Vielen Dank! Damit konnte ich nun den Rest auch noch eliminieren :)
Gruess
|
|
|
|