www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante einer Matrix
Determinante einer Matrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante einer Matrix: idee
Status: (Frage) beantwortet Status 
Datum: 16:24 Mi 16.11.2005
Autor: steffenhst

Ich habe diese Frage in keinem anderem Forum gestellt.

Hallo,

ich habe mal wieder so einen blöden Beweis zu führen.

Sei [mm] A_{n} [/mm] = [mm] \pmat{ 0 & a & 0 & ... & 0 & 0 & 0 \\ b & 0 & a & ... & 0 & 0 &0 \\ 0 & b & 0 & ... & 0 & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & b & 0 & a \\ 0 & 0 & 0 & ... & 0 & b & 0} [/mm]

Beweisen Sie: det [mm] (A_{n}) [/mm] = [mm] \begin{cases} 0, & \mbox{für } n \mbox{ ungerade} \\ (-ab)^{n/2}, & \mbox{für } n \mbox{ gerade} \end{cases} [/mm]

Also für n=2 und n=3 ist das ja klar. Wenn man das als Induktionsanfang nimmt, wie kann ich dann den Induktionsschritt wählen? Über die Leibnizformel.
Vielleicht habt ihr einen Ansatzpunkt für mich.

Grüße Steffen

        
Bezug
Determinante einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mi 16.11.2005
Autor: Hanno

Hallo Steffen!

Sagt dir der Begriff der Entwicklung nach einer Zeile/Spalte etwas? Ist [mm] $A=(a_{ij})_{1\leq i,j\leq n}\in \IK^{n\times n}$, [/mm] so ist [mm] $det(A)=\sum_{i=1}^{n} (-1)^{i+j} a_{ij} [/mm] det [mm] (A_{ij})$ [/mm] (Entwicklung nach der $j$-ten Spalte) und [mm] $det(A)=\sum_{j=1}^{n} (-1)^{i+j} a_{ij} [/mm] det [mm] (A_{ij})$ [/mm] (Entwicklung nach der $i$-ten Zeile). Dabei ist [mm] $A_{ij}$ [/mm] die [mm] $(n-1)\times [/mm] (n-1)$-Matrix über [mm] $\IK$, [/mm] die aus $A$ durch Streichen der $i$-ten Zeile und $j$-ten Spalte erhalten wird.

Zur Herleitung der dir gegebenen Formel kannst du nun [mm] $A_n$ [/mm] zuerst nach der ersten Spalte entwickeln; wendest du dabei obige Formel an, bleibt wegen der vielen Nullen nur ein Summand, nämlich [mm] $a_{21} det(A_{21})=-b det(A_{21})$ [/mm] übrig. Die Determinante von [mm] $A_{21}$ [/mm] bestimmst du nun über Entwicklung nach der ersten Zeile und erhältst dafür als Determinante $a [mm] det(A_{21,12})$ [/mm] ( Matrix A ohne 1.,2. Zeile & Spalte ) - diese Determinante ist aber genau [mm] $A_{n-2}$. [/mm] Daher ist [mm] $A_{n} [/mm] = -ab [mm] det(A_{n-2})$ [/mm] und die zu beweisende Gleichung folgt sofort.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Determinante einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Mi 16.11.2005
Autor: steffenhst

Hallo Hanno,

ich kenne die Operationen. Du hast bei mir das sprcihwörtliche Brett vor dem Kopf entfernt.

Danke für den Tip

Grüße Steffen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de