Determinante einer Permutation < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:41 Do 20.01.2005 | Autor: | Olek |
Hallo,
die Aufgabe lautet:
Es sei [mm] \sigma [/mm] eine Permutation in [mm] S_{n} [/mm] und A : [mm] K^{n} \to K^{n} [/mm] definiert durch [mm] A(x_{1},...,x_{n}) [/mm] = [mm] (x_{\sigma(1)},...,x_{\sigma(n)}). [/mm] Bestimme die Determinante von A.
Die Abbildung bedeutet ja nur eine bijektive Abbildung der Menge auf sich selbst, ganz im Sinne einer simplen Permutation mit n Einträgen. Aber wie berechne ich von soetwas die Determinante?? In keinem meiner Bücher konnte ich darüber etwas finden, und ich würde mich freuen, wenn mir jemand helfen könnte.
Schönen Abend noch,
Olek
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:17 Fr 21.01.2005 | Autor: | andreas |
hi
da es sich um eine lineare abbildung handelt kannst du diese auch mit hilfe einer matrix darstellen. ist z.b. $n=2$ und [mm] $\sigma [/mm] = [mm] \left( \begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \in S_2$ [/mm] die vertauschung, so betrachtest du die abbildung $A: [mm] K^2 \longrightarrow K^2$ [/mm] mit [mm] $A(x_1, x_2) [/mm] = [mm] (x_2, x_1)$. [/mm] die darstellende matrix [mm] $M_A$ [/mm] wäre ja dann
[m] M_A = \pmat{ 0 & 1 \\ 1 & 0 } [/m].
davon kann man nun die determinante berechnen. ist dir nun die aufgabe klar? überlege dir mal, was die determinante mit dem signum der zugehörigen permutation zu tun hat.
grüße
andreas
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:09 Fr 21.01.2005 | Autor: | Olek |
Hallo.
Ich kann fast alles nachvollziehen, aber wie kommst du von sigma = [mm] \left( \begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \in S_2 [/mm] auf [mm] M_A [/mm] = [mm] \pmat{ 0 & 1 \\ 1 & 0 }? [/mm] Das ist mir noch unklar, ansonsten schonmal dankeschön,
Olek
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:12 Fr 21.01.2005 | Autor: | DaMenge |
hi Olek,
die Darstellung des Sigma sollte man nicht als Matrix schreiben, ich mache es mal so:
(1,2)->(2,1)
und du suchst jetzt eine Matrix A, die den Vektor $ [mm] \vektor{1\\2} [/mm] $ in den Vektor $ [mm] \vektor{2\\1} [/mm] $ umwandelt.
Du erkennst, es ist die angegebene Matrix.
Ich will das noch verallgemeinern: (wenn du es nicht allgemeiner brauchst, dann nicht weiterlesen)
du willst eine beliebige Permutation $ [mm] (1,...,n)\to (\sigma (1),...,\sigma [/mm] (n)) $ als Matrix darstellen, dazu folgende Vorüberlegung:
in deiner Matrix A stehe der i-te Einheitsvektor $ [mm] e_i [/mm] $ in der ersten Spalte (der rest der i-ten ZEILE sei 0 !!), wenn man jetzt den Vektor $ [mm] x=\vektor{x_1 \\.\\.\\.\\x_n } [/mm] $ an A multipliziert, dann ist die i-te Komponente von Ax gerade [mm] x_1
[/mm]
wenn [mm] e_i [/mm] in der zweiten Spalte stehen würde, wäre die i-te Komponente von Ax gerade [mm] x_2 [/mm] usw...
also um aus (1,2) -> (2,1) zu machen, muss der zweite Einheitsvektor in der ersten Spalte stehen und der erste Einheitsvektor in der zweiten Spalte.
Allgemeiner: $ [mm] (1,...,n)\to (\sigma (1),...,\sigma [/mm] (n)) $
dann müssen die SPALTENvektoren von A so aussehen:
$ [mm] A=\pmat{ e_{\sigma^{-1} (1)} , ... , e_{\sigma^{-1} (n)} } [/mm] $
d.h. (Beispiel) wenn $ [mm] x_1 \to x_3 [/mm] $ , dann ist $ [mm] \sigma^{-1} [/mm] (3) = 1 $ also würde der erste Einheitsvektor in der dritten Spalte stehen..
Jetzt sieht man hoffentlich: $ [mm] A^T=\pmat{ e_{\sigma (1)} , ... , e_{\sigma (n)} } [/mm] $
(wenn der erste Einheitsvektor in der dritten Spalte stand, steht nun der dritte Einheitsvektor in der ersten)
man kann sich das auch mal so schreiben:
Identität=E
$ [mm] E=\pmat{ e_{1} , ... , e_{n} } \to \pmat{ e_{\sigma (1)} , ... , e_{\sigma (n)} }^T=A^T [/mm] $
hoffe, das verwirrt nicht allzu sehr
viele Grüße
DaMenge
|
|
|
|