www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante / lineare Abhängigkeit
Determinante / lineare Abhängigkeit < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante / lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Do 08.07.2004
Autor: Micha

Hallo Matheraum!
Für meine Klausurvorbereitung hab ich mal folgende Aufgabe aus dem Fischer (14. Auflage, 3.3. / 4) gerechnet, aber der fischer hat ja keine Lösungsvorschläge und hoffe da, dass mir jemand sagt, ob das so stimmt:

Für [mm]x=(x_1 , ... , x_n) [/mm] und [mm] y= (y_1 , ... , y_n) [/mm] aus [mm]K^n [/mm] sind äquivalent:

i) x und y sind linear abhängig.
ii) [mm] det\begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = 0 [/mm] für alle i, j.
---------------------------------------------------
Lösungsidee: Also zunächst mal graphisch bedeutet das ja, dass die Vektoren auf einer Geraden liegen und somit auch ein Parallelepiped des Volumens 0 aufspannen. Das wurde so in der Vorlesung mitdefiniert. Umkehrt ebenso: Ist das Volumen 0, so sind sie linear abhängig.

Meine algebraische Lösungsidee wäre folgende:

0 = [mm] \begin{bmatrix} x_i & y_i \\ x_j & y_j \end{bmatrix} [/mm] = [mm] x_i y_j [/mm] - [mm] x_j y_i [/mm]

[mm] \Rightarrow x_i [/mm]  = [mm] \bruch{x_j y_i}{y_j} [/mm] = [mm] \bruch{x_j}{y_j} \cdot y_i [/mm]
[/mm]
und
[mm] x_j = \bruch{x_i y_j}{y_i} = \bruch{x_i}{y_i} \cdot y_j[/mm]

Damit es. ein [mm]\lambda : \lambda = \bruch{x_i}{y_i} = \bruch{x_j}{y_j}[/mm].

Kann ich nun argumentieren, dass das verhälnis der jeweils i-ten und j-ten Komponente gleich ist für alle i, j und damit x linear abhängig von y???

        
Bezug
Determinante / lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 08.07.2004
Autor: Marc

Hallo Hathorman!

> Hallo Matheraum!
>  Für meine Klausurvorbereitung hab ich mal folgende Aufgabe
> aus dem Fischer (14. Auflage, 3.3. / 4) gerechnet, aber der
> fischer hat ja keine Lösungsvorschläge und hoffe da, dass
> mir jemand sagt, ob das so stimmt:
>  
> Für [mm]x=(x_1 , ... , x_n)[/mm] und [mm]y= (y_1 , ... , y_n)[/mm] aus [mm]K^n[/mm]
> sind äquivalent:
>  
> i) x und y sind linear abhängig.
>  ii) [mm]det\begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = 0[/mm] für alle i,
> j.
>  ---------------------------------------------------
>  Lösungsidee: Also zunächst mal graphisch bedeutet das ja,
> dass die Vektoren auf einer Geraden liegen und somit auch
> ein Parallelepiped des Volumens 0 aufspannen. Das wurde so
> in der Vorlesung mitdefiniert. Umkehrt ebenso: Ist das
> Volumen 0, so sind sie linear abhängig.

Okay, obwohl es hier ja nur zwei-dimensional ist und wir ein Parallelogramm haben.

> Meine algebraische Lösungsidee wäre folgende:
>  
> 0 = [mm]\begin{bmatrix} x_i & y_i \\ x_j & y_j \end{bmatrix}[/mm] = [mm]x_i y_j[/mm] - [mm]x_j y_i [/mm]

[ok]

> [mm]\Rightarrow x_i[/mm]  = [mm]\bruch{x_j y_i}{y_j}[/mm] = [mm]\bruch{x_j}{y_j} \cdot y_i[/mm]

Gut, aber das gilt natürlich nur, falls [mm] $y_j\not=0$. [/mm]

> und
>  [mm]x_j = \bruch{x_i y_j}{y_i} = \bruch{x_i}{y_i} \cdot y_j[/mm]

Und hier muß auch noch [mm] $y_i\not=0$ [/mm] vorausgesetzt sein bzw. noch der "Gegenfall" untersucht werden.

> Damit es. ein [mm]\lambda : \lambda = \bruch{x_i}{y_i} = \bruch{x_j}{y_j}[/mm].
>  
>
> Kann ich nun argumentieren, dass das verhälnis der jeweils
> i-ten und j-ten Komponente gleich ist für alle i, j und
> damit x linear abhängig von y???

Mir ist bei deiner Lösung gar nicht so klar, was du eigentlich zeigen willst oder meinst, bereits gezeigt zu haben, und ich befürchte, dir ist es auch nicht klar.

Äquivalenzen bestehen aus zwei logischen Schlußrichtungen, einmal [mm] $\Rightarrow$ [/mm] und einmal [mm] $\Leftarrow$. [/mm] Diese würde ich immer versuchen, mir einzeln zu überlegen und dann zu zeigen. In Einzelfällen bekommt man zwar auch eine schöne Äquivalenzkette hin, aber das ist die Ausnahme.

In deinem Fall sind die beiden Richtungen
i) [mm] $\Rightarrow$ [/mm] ii)
und
ii) [mm] $\Rightarrow$ [/mm] i)

Also los:

"i) [mm] $\Rightarrow$ [/mm] ii)"
x und y seien zwei linear abhängige Vektoren.
Dann ist der eine ein Vielfaches des anderen, es existiert also eine [mm] $\lambda\in\IR$, [/mm] so dass [mm] $x=\lambda*y$. [/mm]
Daraus folgt sofort die Behauptung ii) ;-)

"ii) [mm] $\Rightarrow$ [/mm] i)"
Angenommen, es gäbe vier Komponenten [mm] $x_i, x_j, y_i, y_j$, [/mm] so dass  [mm]\begin{vmatrix} x_i & y_i \\ x_j & y_j \end{vmatrix}\not= 0[/mm]

[mm] $\Rightarrow\ x_i*y_j-x_j*y_i\not=0$ [/mm]
[mm] $\Rightarrow\ x_i*y_j\not=x_j*y_i$ [/mm]

Hier mußt du jetzt folgern, dass es kein [mm] $\lambda\in\IR$ [/mm] gibt mit [mm] $x_i=\lambda*y_i$ [/mm] und [mm] $x_j=\lambda*y_j$, [/mm] dabei helfen dir (hoffentlich) deine bisherigen Überlegungen oben (denk' an die Fallunterscheidungen).

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de