www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante mit Gauß
Determinante mit Gauß < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante mit Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 06.12.2012
Autor: Der-Madde-Freund

Hi,

ich habe im Skript folgende Sätze gefunden:
1. Addieren des Vielfachen einer Zeile zu einer anderen:
Die Determinante ändert sich nicht.

2. Multiplizieren einer Zeile mit einer Zahl c [mm] \not= [/mm] 0:
Die Determinante wird ebenfalls mit c multipliziert.

3. Vertauschen zweier Zeilen:
Die Determinante wird mit −1 multipliziert (wechselt ihr Vorzeichen).

------------------------------------------------------------------------------

Jetzt habe ich folgende Matrix, von der ich die Determinante mit Gauß bestimmen möchte:

[mm] A=\pmat{ 1 & 2 & -3 & 4 \\ 2 & 7 & 0 & 3 \\ 3 & -4 & 0 & -4 \\ 4 & 9 & 1 & 2} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 4 & 6 & -5 \\ 0 & -10 & 9 & -16 \\ 0 & 1 & 13 & -14} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & -10 & 9 & -16 \\ 0 & 3 & 6 & -5} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 139 & -156 \\ 0 & 0 & -33 & 37} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 1 & -\frac{156}{139} \\ 0 & 0 & -33 & 37} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 1 & -\frac{156}{139} \\ 0 & 0 & 0 & -\frac{5}{139}} [/mm]

Da ich einmal eine Zeile getauscht habe und eine Zeile in der 4. Matrix mit [mm] \frac{1}{139} [/mm] multipliziert habe, habe ich die Determinate wie folgt berechnet:

[mm] det(A)=1\cdot1\cdot1\cdot(-\frac{5}{139})\cdot(-1)\cdot139=5 [/mm]


Das Ergebnis stimmt auch nur mein Problem ist der fett hervorgehobene Satz im Skript: Ich habe ja in der 4. Matrix eine Zeile mit [mm] c=\frac{1}{139} [/mm] multipliziert. Die Determinante habe ich ja aber mit 139, also dem Kehrwert von c multipliziert, laut Skript müsste das ja auch auch [mm] \frac{1}{139} [/mm] sein... Was verstehe ich daran jetzt falsch?

        
Bezug
Determinante mit Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Do 06.12.2012
Autor: chrisno

Du möchtest den Wert der Determinante erhalten. Nachdem Du die Zeile mit 1/139 multiplizziert hast, ist das Gesamtergebnis umn diesen Faktor zu klein. Das bringst Du wieder in Ordnung, indem Du mit 139 multiplizierst.
Eine andere Betrachtunsweise: Du hast 139 "ausgeklammert".

Bezug
                
Bezug
Determinante mit Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Do 06.12.2012
Autor: Der-Madde-Freund

Ich verstehe das Verfahren an sich ja, wenn man das nicht täte, wäre im Prinzip ja jede Determinate auch Eins. Aber müsste im Skript dann nicht stehen, das man die Determinante dann mit [mm] \frac{1}{c} [/mm] multiplizieren muss?

Bezug
                        
Bezug
Determinante mit Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Do 06.12.2012
Autor: chrisno

Nein, das steht völlig richtig im Skript:
Wenn Du eine Zeile mit c multipliziertst, dann hat die Determinante dieser neuen Matrix den c-fachen Wert der Determinante der ursprünglichen Matrrix.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de