Determinanten-Berechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:02 Fr 07.01.2005 | Autor: | DrOetker |
Hallo!
Leider habe ich das Thema Determinanten verpasst und nun habe ich einige Fragen zu diesem Thema.
Zur Einführung war folgende Matrix gegeben.
[mm] \pmat{ 1 & 2 & 1 & 3 \\ -2 & 3 & 2 & 1\\ 0 & 1 & 0 & 0\\5 & -2 & 3 & 2 }
[/mm]
Nun haben die einfach so die dritte Zeile und die zweite Spalte gestrichen. Wieso?
Habe auf jeden Fall einmal ein Beispiel durchgenommen und dabei bin ich so vorgegangen wie ich glaubte das es richtig war.
Schaut euch das doch bitte einmal an.
[mm] A=\vmat{0 & 2 & 3 & -1\\-2 & 8 & 3 & 1\\0 & -1 & -4 & 3\\ 0 & 2 & 3 & 1}
[/mm]
Zeile 1; Spalte=1 gestrichen, somit erhalte ich
def(A) = - [mm] \vmat{8 & 3 & 1\\-1 & -4 & 3\\ 2 & 3 & 1}
[/mm]
Nun habe ich die letzte Spalte und die letzte Zeile genommen um diese Faktoren zu ermitteln.
def(A) = - ( 2* [mm] \vmat{ 3 & 1 \\ - 4 & 3} [/mm] -3* [mm] \vmat{8 & 1 \\ -1 & 3} [/mm] 1* [mm] \vmat{8 & 3 \\ -1 & -4})
[/mm]
als ERgebnis erhalte ich dann
def(A)=71
ist das so richtig???
Zusätzlich stand in der Aufgabenstellung "Berechnen Sie die folgenden Determinanten ggf. unter Verwendung der Beziehung [mm] det(A)=det(A^T)".
[/mm]
Soll das heißen das ich die Matrix ggf. Transpnoieren soll? Wann?
So das war es jetzt auch mit der Fragerei.
Ich hoffe dass ihr mir helfen könnt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:26 Fr 07.01.2005 | Autor: | Tito |
Hallo,
> Hallo!
> Leider habe ich das Thema Determinanten verpasst und nun
> habe ich einige Fragen zu diesem Thema.
> Zur Einführung war folgende Matrix gegeben.
> [mm]\pmat{ 1 & 2 & 1 & 3 \\ -2 & 3 & 2 & 1\\ 0 & 1 & 0 & 0\\5 & -2 & 3 & 2}
[/mm]
Hier wurde einfach nach der 3. Zeile entwickelt, was heißt:
A=[mm]\pmat{ 1 & 2 & 1 & 3 \\ -2 & 3 & 2 & 1\\ 0 & 1 & 0 & 0\\5 & -2 & 3 & 2 }
[/mm]
det A = det[mm]\pmat{ 1 & 2 & 1 & 3 \\ -2 & 3 & 2 & 1\\ 0 & 1 & 0 & 0\\5 & -2 & 3 & 2 }
[/mm]=0*det[mm]\pmat{ 2 & 1 & 3 \\ 3 & 2 & 1\\ 5 & -2 & 3}[/mm]-1*det[mm]\pmat{ 1 & 1 & 3 \\ -2 & 2 & 1\\ 5 & 3 & 2 }
[/mm]+0*det[mm]\pmat{ 1 & 2 & 3 \\ -2 & 3 & 1\\5 & -2 & 2 }
[/mm]-0*det[mm]\pmat{ 1 & 2 & 1 \\ -2 & 3 & 2 \\5 & -2 & 3 }
[/mm]
Dieses Verfahren hast du auch in deiner Frage angewand. Nun sieht man das nur die Determinate mit der -1 stehen bleibt also,
-1*det[mm]\pmat{ 1 & 1 & 3 \\ -2 & 2 & 1\\ 5 & 3 & 2 }
[/mm]=-1*(4+5-18-30-3+4)=40
mit dem streichen der 3 Zeile ging nur weil nur 0 und eine 1 da steht, du musst dabei bloß auf das Vorzeichen achten. Wäre die 1 beispielsweise in der 1. Spalte gewesen wäre die det A= -40.
Somit kannst du nicht irgendwelche Zeilen oder Spalten streichen wie du es bei deinem Beispiel gemacht hast.
Bei deinem Beispiel kannst du nach der ersten Spalte entwickeln. Nach dem gleichen Prinzip wie oben, bekommt man dann:
det A = det[mm]\pmat{ 0 & 2 & 3 & -1 \\ -2 & 8 & 3 & 1\\ 0 & -1 & -4 & 3\\0 & 3 & 2 & 1 }[/mm]=0*det[mm]\pmat{ 8 & 3 & 1\\ -1 & -4 & 3\\ 3 & 2 & 1 }[/mm]-(-2)*det[mm]\pmat{ 2 & 3 & -1 \\ -1 & -4 & 3\\ 3 & 2 & 1 }[/mm]+0*det[mm]\pmat{ 2 & 3 & -1 \\ 8 & 3 & 1\\ 3 & 2 & 1 }[/mm]-0*det[mm]\pmat{ 2 & 3 & -1 \\ 8 & 3 & 1\\ -1 & -4 & 3 }[/mm]=-(-2)*det[mm]\pmat{ 2 & 3 & -1 \\ -1 & -4 & 3\\ 3 & 2 & 1 }[/mm]=2*(-8+2+27-12+3-12)=0
dies ist die richtige Lösung. Das sieht man auch daran, dass die Matrix [mm]\pmat{ 0 & 2 & 3 & -1 \\ -2 & 8 & 3 & 1\\ 0 & -1 & -4 & 3\\0 & 3 & 2 & 1 }[/mm] keinen vollen Rang hat, also eine Nullzeile durch Zeilenumformung entsteht. Meinen gesamten Weg will ich jetzt nicht notieren aber durch einige Zeilenumformungen bin ich auf [mm]\pmat{ -2 & 8 & 3 & 1 \\ 0 & 1 & 1 & 0\\ 0 & 0 & -3 & 3\\0 & 0 & 0 & 0 }[/mm] gekommen.
Bei deiner letzten Frage kann ich leider nicht helfen, weil ich nicht ganz verstehe was da gemeint ist.
Gruß
Tito
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:34 Fr 07.01.2005 | Autor: | e.kandrai |
> det A = det[mm]\pmat{ 1 & 2 & 1 & 3 \\ -2 & 3 & 2 & 1\\ 0 & 1 & 0 & 0\\5 & -2 & 3 & 2 }
[/mm]=0*det[mm]\pmat{ 2 & 1 & 3 \\ 3 & 2 & 1\\ 5 & -2 & 3}[/mm]-1*det[mm]\pmat{ 1 & 1 & 3 \\ -2 & 2 & 1\\ 5 & 3 & 2 }
[/mm]+0*det[mm]\pmat{ 1 & 2 & 3 \\ -2 & 3 & 1\\5 & -2 & 2 }
[/mm]-0*det[mm]\pmat{ 1 & 2 & 1 \\ -2 & 3 & 2 \\5 & -2 & 3 }[/mm]
Noch was dazu, warum sich bei der Berechnung auf der rechten Seite die Vorfaktoren vor dem Matrizen immer im Vorzeichen abwechseln: bei der Determinantenberechnung sind die Vorzeichen immer wie auf einem Schachbrett angeordnet, immer abwechslnd + und -
Und beim ersten Eintrag links oben steht immer ein +
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:21 Sa 08.01.2005 | Autor: | DrOetker |
Hallo!
Vorab vielen Dank das du dir die Mühe gemacht hast meine Frage zu beantworten. Eine Frage habe ich aber noch.
Habe das so verstanden das ich am Ende das ERgebnis ausrechne ich dem ich immer Das Produk der Diagonalen abwechselnd addiere und dann subtrahiere, also z.B. (letze Aufgabe)
det A = (2*(-4)*1) - ( (-1) * (-4) * 2) + (3*3) - ....
Offensichtlich ist das falsch. Wie hast du also die Zahlen zusammenaddiert?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:48 Sa 08.01.2005 | Autor: | Tito |
Hi
Also ich werde kurz allgemein aufschreiben nach welchen Prinzip ich die Determinante berechnet habe.
Sei A [mm] \in [/mm] M(n [mm] \times [/mm] n, [mm] \IK),
[/mm]
Für n=2: det A= det [mm] \vmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] = [mm] a_{11}*a_{22} [/mm] - [mm] a_{12}*a_{21} [/mm] .
Einfach die Diagonale von links oben nach rechts unten minus der Diagonalen von rechts oben nach links unten, dies ist bei n=2.
Für n=3: Hier kommt die "Regel von Sarrus" zum Einsatz.
det A = det [mm] \vmat{ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} }= a_{11}*a_{22}*a_{33} [/mm] + [mm] a_{12}*a_{23}*a_{31} [/mm] + [mm] a_{13}*a_{21}*a_{32} [/mm] - [mm] a_{11}*a_{23}*a_{32} [/mm] - [mm] a_{12}*a_{21}*a_{33} [/mm] - [mm] a_{13}*a_{22}*a_{31}
[/mm]
Ok, dann angewandt auf das Beispiel
det [mm] \vmat{ 2 & 3 & -1 \\ -1 & -4 & 3 \\ 3 & 2 & 1} [/mm] = [2*(-4)*1] + [3*3*3] + [(-1)*(-1)*2] - [3*(-1)*1] - [2*3*2] - [(-1)*(-4)*3] = (-8) + 27 + 2 + 3 - 12 - 12 = 0 .
Gruß
Tito
|
|
|
|