www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Determinanten
Determinanten < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinanten: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:49 Mo 02.06.2008
Autor: patsch

Aufgabe
Berechnen Sie für alle [mm] \beta\in\IR [/mm] die Determinante folgender Matrix:
[mm] f(\beta) [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4\\ 3 & \beta & 6 & 1 \\ 1& 0 & 2 & 2\\ 0 & 0 & 3 & 4} [/mm]
Zeigen Sie das die Funktion Det(f) eine stetige Funktion von  [mm] \beta [/mm] ist.

Die Determinante habe ich bereits berechnet [mm] f(\beta) [/mm] = [mm] 2\beta+30. [/mm] Jedoch verstehe ich den letzten Satz nicht ganz, aber ich glaube das [mm] f(\beta) [/mm] stetig ist, da jedes Polynom eine stetige Funktion ist, jedoch weis ich nicht, wie ich das zeigen soll.

mfg patsch

        
Bezug
Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mo 02.06.2008
Autor: Merle23

[mm] f(\beta)=2\beta+30 [/mm] ist doch stetig.

Bezug
                
Bezug
Determinanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 02.06.2008
Autor: patsch

Ja, das weis ich ja. Ich dachte, nur man kann das noch irgendwie formal beweisen.


Bezug
                        
Bezug
Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mo 02.06.2008
Autor: Merle23

Formal beweisen, dass [mm] f(\beta)=2\beta+30 [/mm] stetig ist? Das wird doch in der Analysisvorlesung gemacht - in LinAlg kannste das deswegen einfach benutzen. Du musst ja nicht immer beim Urschleim anfangen.
Kannst aber natürlich auch selbst machen - nimm einfach die Definition der Stetigkeit (die mit [mm] \epsilon-\delta) [/mm] und setz ein - ist ganz leicht.

Oder willste Formal beweisen, dass die Determinante eine stetige Funktion ist? Dazu nimmste einfach die Formel von Leibniz. Die sagt ja aus, dass die Determinante "bloß" ein recht kompliziertes Polynom ist - und Polynome sind ja stetig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de