www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinanten aus Unbekannten
Determinanten aus Unbekannten < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinanten aus Unbekannten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Mi 12.09.2012
Autor: rekees

Aufgabe
det [mm] \pmat{ a & b & c \\ d & e & f \\ g & h& j } [/mm] = -6, was ist dann
det [mm] \pmat{ g & h & j \\ d & e & f \\ a & b & c }, [/mm] det [mm] \pmat{ a & b & c \\ d & e & f \\ 2a & 2b & 2c }, [/mm] det [mm] \pmat{ a+d & b+e & c+f \\ -d & -e & -f \\ g & h& j }? [/mm]

Vor dieser Aufgabe sitze ich gerade. Meine Idee wäre jeweils die Determinanten auszurechnen und dann einfach zu vergleichen Faktorweise oder so ähnlich, aber das kommt mir zu "unmathematisch" vor. Gibt es da noch eine andere Möglichkeit?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Determinanten aus Unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Mi 12.09.2012
Autor: angela.h.b.


> det [mm]\pmat{ a & b & c \\ d & e & f \\ g & h& j }[/mm] = -6, was
> ist dann
>  det [mm]\pmat{ g & h & j \\ d & e & f \\ a & b & c },[/mm] det
> [mm]\pmat{ a & b & c \\ d & e & f \\ 2a & 2b & 2c },[/mm] det [mm]\pmat{ a+d & b+e & c+f \\ -d & -e & -f \\ g & h& j }?[/mm]
>  
> Vor dieser Aufgabe sitze ich gerade. Meine Idee wäre
> jeweils die Determinanten auszurechnen und dann einfach zu
> vergleichen Faktorweise oder so ähnlich, aber das kommt
> mir zu "unmathematisch" vor. Gibt es da noch eine andere
> Möglichkeit?

Hallo,

die zweite Matrix ist durch Vertauschen zweier Zeilen aus der ersten entstanden, was mit der Determinante beim Zeilentausch passierst, hast Du sicher gelernt.

Die dritte Matrix hat zwei linear abhängige Zeilen, auch hier braucht man gar nicht mehr zu rechnen.

In der letzten Matrix wurde (bezogen auf die erste) die zweite Zeile zuur ersten addiert, wofür es eine Regel gibt, zusätzlich wurde die zweite Zeile mit einer Zahl multipliziert.  Auch hierfür solltest Du etwas notiert haben.

LG Angela

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Determinanten aus Unbekannten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 12.09.2012
Autor: rekees

Vielen Dank für die schnelle Antwort.

Zu 1. Die Determinante vertauscht dann das Vorzeichen, wenn ich das richtig notiert habe?

zu 2. Bei dieser Matrix handelt es sich dann um eine alternierende Matrix, oder?

und 3. Fällt das dann unter das Gaußsche Eliminationsverfahren? Da ich ja die letzte Matrix erzeugt habe aus der 1. durch Zeilenaddition (was ja dann heißt dass die Determinante gleich wäre) und durch die Multiplikation mit einer Zahl (was dann bedeutet die Determinante wird auch mit dieser Zahl multipliziert)?

Bezug
                        
Bezug
Determinanten aus Unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 12.09.2012
Autor: fred97


> Vielen Dank für die schnelle Antwort.
>  
> Zu 1. Die Determinante vertauscht dann das Vorzeichen, wenn
> ich das richtig notiert habe?
>  
> zu 2. Bei dieser Matrix handelt es sich dann um eine
> alternierende Matrix, oder?
>  
> und 3. Fällt das dann unter das Gaußsche
> Eliminationsverfahren? Da ich ja die letzte Matrix erzeugt
> habe aus der 1. durch Zeilenaddition (was ja dann heißt
> dass die Determinante gleich wäre) und durch die
> Multiplikation mit einer Zahl (was dann bedeutet die
> Determinante wird auch mit dieser Zahl multipliziert)?

Da ich heute meinen freundlichen Tag habe, habe ich mal ein paar Rechenregeln für Determinanten für Dich herausgesucht (eigentlich solltest Du das erledigen):

http://www-user.tu-chemnitz.de/~benner/Lehre/HM1/DeterminantenRegeln.pdf

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de