www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinantenbestimmung
Determinantenbestimmung < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenbestimmung: Beweis
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 02.06.2012
Autor: silfide

Aufgabe
Sei $K$ ein Körper und [mm] $A=[a_{ij}] \in K^{n,n}$ [/mm] mit [mm] $a_{ij}=\bruch{1}{x_{i}+y_{j}}$ [/mm] für gewisse [mm] $x_{1},\ldots,x_{n},y_{1},\ldots,y_{n} \in [/mm] K$. (Insbesondere gilt also [mm] $x_{i}+y_{j}\not=0$ [/mm] für alle $i,j$).
Zeigen Sie, dass
[mm] $\det(A)=\bruch{\produkt_{1 \le i < j \le n }(x_{i}-x_{j})(y_{i}-y_{j})}{\produkt_{i,j=1}^{n}(x_{i}+y_{j})}$ [/mm]
gilt.




Hey,

sitze gerade an obiger Aufgabe und da ich nicht wirklich weiß wie ich diese anpacken soll, habe ich erstmal getestet- nach dem Motto "erst mal schauen, ob das überhaupt stimmt - sicher ist sicher". Also habe ich das Ganze für eine 2 [mm] \times [/mm] 2 Matrix probiert. (Es stimmt für die getestete Matrix)

Und nun zu meiner Frage, reicht es, wenn ich quasi wie bei der vollständigen Induktion, dass erst für ne 2 [mm] \times [/mm] 2 Matrix und dann für eine 3 [mm] \times [/mm] 3 Matrix zeige. (Generell: Kann man sowas machen, oder würde es nicht als Beweis durchgehen?)

Oder geht es simpler (und verständlich)??

Mia

        
Bezug
Determinantenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Sa 02.06.2012
Autor: Marc

Hallo silfide,

> sitze gerade an obiger Aufgabe und da ich nicht wirklich
> weiß wie ich diese anpacken soll, habe ich erstmal
> getestet- nach dem Motto "erst mal schauen, ob das
> überhaupt stimmt - sicher ist sicher". Also habe ich das
> Ganze für eine 2 [mm]\times[/mm] 2 Matrix probiert. (Es stimmt für
> die getestete Matrix)

Okay, das ist gut und vernünftig, da man so wichtige Beweis-Ideen erhält.
  

> Und nun zu meiner Frage, reicht es, wenn ich quasi wie bei
> der vollständigen Induktion, dass erst für ne 2 [mm]\times[/mm] 2
> Matrix und dann für eine 3 [mm]\times[/mm] 3 Matrix zeige.
> (Generell: Kann man sowas machen, oder würde es nicht als
> Beweis durchgehen?)

Die vollständige Induktion ist ein weltweit anerkannte Beweisverfahren :-), und kann hier sicher angewendet werden.
Übrigens würde ich die Induktion dann aber bei $n=1$ beginnen, denn die Formel soll ja auch dafür gelten.

> Oder geht es simpler (und verständlich)??

Das sehe ich im Augenblick nicht.

Viel Erfolg bei der Induktion :-)
Marc

Bezug
                
Bezug
Determinantenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Sa 02.06.2012
Autor: silfide

Hallo Mark,

danke für die Antwort.

Zu n=1... Wenn ich mir eine 1 [mm] \times [/mm] 1 Matrix bastel, wie komme ich denn da auf die Determinante?? (Vermutlich trivial, aber nie gemacht!)

Mia

Bezug
                        
Bezug
Determinantenbestimmung: det (a)=a
Status: (Antwort) fertig Status 
Datum: 12:52 Sa 02.06.2012
Autor: Marc

Hallo Mia,

> Zu n=1... Wenn ich mir eine 1 [mm]\times[/mm] 1 Matrix bastel, wie
> komme ich denn da auf die Determinante?? (Vermutlich
> trivial, aber nie gemacht!)

Die Determinante einer [mm] $1\times [/mm] 1$ Matrix ist der Eintrag selbst, also
[mm] $\det (a_{11})=a_11$ [/mm] :-)

Viele Grüße
Marc

Bezug
                                
Bezug
Determinantenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 02.06.2012
Autor: silfide

Hatte einen Fehler in die Aufgabenstellung getippt:

Zu zeigen ist
[mm] det(A)=\bruch{\produkt_{1 \le i < j \le n }(x_{i}-x_{j})(y_{i}-y_{j})}{\produkt_{i,j=1}^{n}(x_{i}+y_{i})}$ [/mm]
gilt.

also i<j und damit wäre für n=1 die Formel, welche zu zeigen ist, nicht anwendbar. Kann ich trotzdem Induktion benutzen??
Oder wie kann ich es zeigen??

Mia

Bezug
                                        
Bezug
Determinantenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Sa 02.06.2012
Autor: Marc

Hallo Mia,

> Hatte einen Fehler in die Aufgabenstellung getippt:
>  
> Zu zeigen ist
>  [mm]det(A)=\bruch{\produkt_{1 \le i < j \le n }(x_{i}-x_{j})(y_{i}-y_{j})}{\produkt_{i,j=1}^{n}(x_{i}+y_{i})}$[/mm]
>  
> gilt.
>  
> also i<j und damit wäre für n=1 die Formel, welche zu
> zeigen ist, nicht anwendbar.

Ja, das macht nun Sinn.

> Kann ich trotzdem Induktion
> benutzen??

Ja, du hast dir den Induktionsanfang für $n=2$ doch offenbar schon überlegt.

Im Induktionsschritt musst du ja die Determinante einer [mm] $(n+1)\times(n+1)$-Matrix [/mm] berechnen. Das würde ich mit dem Laplaceschen Entwicklungssatz machen und nach z.B. der letzten Spalte entwickeln. Auf alle $n$ Determinanten der [mm] $x\times [/mm] n$-Matrizen lässt sich die Induktionsvoraussetzung anwenden, da in den Einträgen genau ein [mm] $x_i$ [/mm] und [mm] $y_j$ [/mm] fehlt.

Viele Grüße
Marc

Bezug
                                                
Bezug
Determinantenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 02.06.2012
Autor: silfide

Super, an Laplace habe ich auch schon gedacht für die 3 [mm] \times [/mm] 3 Matrize.

Bin dir echt dankbar.

Mia

Bezug
                                        
Bezug
Determinantenbestimmung: auch für n=1
Status: (Antwort) fertig Status 
Datum: 14:51 Sa 02.06.2012
Autor: Marc

Hallo Mia,

> Hatte einen Fehler in die Aufgabenstellung getippt:
>  
> Zu zeigen ist
>  [mm]det(A)=\bruch{\produkt_{1 \le i < j \le n }(x_{i}-x_{j})(y_{i}-y_{j})}{\produkt_{i,j=1}^{n}(x_{i}+y_{i})}$[/mm]
>  
> gilt.
>  
> also i<j und damit wäre für n=1 die Formel, welche zu
> zeigen ist, nicht anwendbar.

Mir fiel gerade ein, dass die Formel natürlich auch für $n=1$ anwendbar ist und daher der Induktionsanfang auch durch aus bei $n=1$ liegen sollte.

Für $n=1$ entsteht im Zähler des Bruchs ein leeres Produkt, das vereinbarungsgemäß den Wert 1 hat.

> Kann ich trotzdem Induktion
> benutzen??

[ok]

Viele Grüße
Marc

Bezug
                                                
Bezug
Determinantenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Sa 02.06.2012
Autor: silfide

Hallo Marc,

> Mir fiel gerade ein, dass die Formel natürlich auch für
> [mm]n=1[/mm] anwendbar ist und daher der Induktionsanfang auch durch
> aus bei [mm]n=1[/mm] liegen sollte.
>  
> Für [mm]n=1[/mm] entsteht im Zähler des Bruchs ein leeres Produkt,
> das vereinbarungsgemäß den Wert 1 hat.

Das wäre natürlich klasse, wenn das funktioniert - allerdings komme ich immer auf [mm] \bruch{0}{1}. [/mm]
Weil:

[mm] \bruch{(x_{1}-x_{1})(y_{1}-y_{1})}{(x_{1}+y_{1})} [/mm]

Vermutlich ist das falsch!
Kannst du mir das mit dem leeren Produkt mal zeigen??

Sitze nämlich gerade an Laplace und da kann man sich ja tot rechnen/schreiben...

Mia


Bezug
                                                        
Bezug
Determinantenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Sa 02.06.2012
Autor: Marc

Hallo Mia,

> > Mir fiel gerade ein, dass die Formel natürlich auch für
> > [mm]n=1[/mm] anwendbar ist und daher der Induktionsanfang auch durch
> > aus bei [mm]n=1[/mm] liegen sollte.
>  >  
> > Für [mm]n=1[/mm] entsteht im Zähler des Bruchs ein leeres Produkt,
> > das vereinbarungsgemäß den Wert 1 hat.
>  
> Das wäre natürlich klasse, wenn das funktioniert -

Also, klasse würde ich das nun nicht nennen, der Induktionsanfang ist nur etwas einfacher geworden.

> allerdings komme ich immer auf [mm]\bruch{0}{1}.[/mm]
>  Weil:
>  
> [mm]\bruch{(x_{1}-x_{1})(y_{1}-y_{1})}{(x_{1}+y_{1})}[/mm]
>  
> Vermutlich ist das falsch!
>  Kannst du mir das mit dem leeren Produkt mal zeigen??

Die Formel, die zu beweisen ist, lautet ja:

[mm] $\det(A)=\bruch{\produkt_{1 \le i < j \le n }(x_{i}-x_{j})(y_{i}-y_{j})}{\produkt_{i,j=1}^{n}(x_{i}+y_{i})}$ [/mm]

Für n=1 ergibt sich:

[mm] $\det(A)$ [/mm]

[mm] $=\bruch{\produkt_{1 \le i < j \le 1 }(x_{i}-x_{j})(y_{i}-y_{j})}{\produkt_{i,j=1}^{1}(x_{i}+y_{i})}$ [/mm]

[mm] $=\bruch{1}{(x_{1}+y_{1})}$, [/mm] da es für das Produkt im Zähler kein einziges Paar $(i,j)$ gibt mit $1<i<j<1$. Das meinte ich mit "leerem Produkt", es hat den definierten Wert 1 (analog zur leeren Summe, die den definierten Wert 0 hat).

Vielleicht noch ein Beispiel:

[mm] $\produkt_{k=1}^2 [/mm] k=1*2$, [mm] $\produkt_{k=1}^1 [/mm] k=1$ und [mm] $\produkt_{k=1}^0 [/mm] k=1$

[mm] $\summe_{k=1}^2 [/mm] k=1+2$, [mm] $\summe_{k=1}^1 [/mm] k=1$ und [mm] $\summe_{k=1}^0 [/mm] k=0$
  

> Sitze nämlich gerade an Laplace und da kann man sich ja
> tot rechnen/schreiben...

Laplace musst du aber doch im Induktionsschritt anwenden, bei den Überlegungen zu n=1 ging es aber um den Induktionsanfang.
Ich sehe da aber keine Alternative zu Laplace im Induktionsschritt oder überhaupt zur Induktion -- vielleicht jemand anderes hier im Forum?

Viele Grüße
Marc


Bezug
                                                                
Bezug
Determinantenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 02.06.2012
Autor: silfide

Hallo Marc,

bei der 2 [mm] \times [/mm] 2 Matrix, habe ich quasi von hinten angefangen und verwende das det(A)=a*d-b*c ist. Und wenn ich bei n=1 anfange, dann kann ich mir die 3 [mm] \times [/mm] 3 Matrix beim Induktionsschritt sparen.

Als du das leere Produkt nanntest, habe ich mir natürlich gleich erstmal angeschaut, was du meinst - allerdings gelang es mir nicht, das zu übertragen.

Ich schaue nochmal rauf, schreib alles auf und schlafe drüber - bringt vllt. was. ...

Ich danke dir!

Mia

Bezug
                                                                        
Bezug
Determinantenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 02.06.2012
Autor: Marc

Hallo Mia,

> bei der 2 [mm]\times[/mm] 2 Matrix, habe ich quasi von hinten
> angefangen und verwende das det(A)=a*d-b*c ist.

[ok]

> Und wenn
> ich bei n=1 anfange, dann kann ich mir die 3 [mm]\times[/mm] 3
> Matrix beim Induktionsschritt sparen.

Nein, das ist doch dann kein Induktionsschritt (I.S.).

In der Induktionsvoraussetzung (I.V.) nimmt man an, dass die Formel für ein bestimmtes (aber nicht näher spezifiziertes) $n$ bereits gelte. Im I.S. folgerst du dann aus der I.V., dass die Formel auch für $n+1$ gilt.

> Als du das leere Produkt nanntest, habe ich mir natürlich
> gleich erstmal angeschaut, was du meinst - allerdings
> gelang es mir nicht, das zu übertragen.
>  
> Ich schaue nochmal rauf, schreib alles auf und schlafe
> drüber - bringt vllt. was. ...

Was anderes zu machen als sich mit dem Problem zu beschäftigen kann ich nur empfehlen. Das mit der Gültigkeit der Formel für n=1 ist mir unter der Dusche eingefallen, obwohl ich da nicht wirklich über Mathematik nachgrübele... :-)

Viele Grüße
Marc

Bezug
                                                                                
Bezug
Determinantenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Sa 02.06.2012
Autor: silfide

Hallo Marc,

ja, logisch im IS wird n+1 betrachtet... okay... schade... wollte mir gerade Arbeit sparen :-P. Habe nämlich noch ganz viele lustige Aufgaben.. als wenn du wieder Stoff für unter der Dusche brauchst... *schepass*

Ich stelle frühstens Morgen wieder Fragen...

Danke!

Mia

Bezug
                                                                                        
Bezug
Determinantenbestimmung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:31 So 03.06.2012
Autor: silfide

Hallo,

leider ist noch mehrmaligen unfruchtbaren Versuchen immer noch nix Brauchbares zu stande gekommen. (Schon die Indizes machen mich fertig)

Hat jemand vllt. ne Idee wie ich Laplace's Entwicklungssatz in den IS bringen kann. Oder ob es doch anderes gehen könnte??

Mia

Bezug
                                                                                                
Bezug
Determinantenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 So 03.06.2012
Autor: WWatson

Hallo, silfide,

also, Du nimmst an, dass Deine Behauptung für k (d.h. für eine kxk-Matrix) gilt, das ist dann Deine Induktionsvoraussetzung. Jetzt willst Du im Induktionsschritt daraus schließen, dass die Behauptung auch für k+1 richtig ist.
Das läuft dann so, dass Du auf Deine (k+1)x(k+1)-Matrix einmal Laplace anwendest. Das liefert Dir ja dann wiederum kxk-Matrizen, von denen Du aber nach Induktionsvoraussetzung bereits weißt, dass die Formel für diese auf jeden Fall gültig ist.

Viele Grüße,

WWatson

Bezug
                                                                                                
Bezug
Determinantenbestimmung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 05.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de