www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinantenrang
Determinantenrang < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenrang: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:35 So 03.06.2012
Autor: DudiPupan

Aufgabe
Sei $A [mm] \in K^{m\times n}$. [/mm] Sind [mm] $1\leq [/mm] s [mm] \leq [/mm] n$ und [mm] $1\leq s\leq [/mm] m$, so ist eine [mm] $r\times [/mm] s $ Untermatrix von $A$ eine Matrix, die man durch Streichen von $m-r$ Zeilen und $n-s $ Spalten aus $A$ erhält.
Der Determinantenrang $detrang(A)$ einer Matrix [mm] $A\neq [/mm] 0$ ist das größte [mm] $1\leq [/mm] r [mm] \leq [/mm] min(n,m)$ so, dass eine [mm] $r\times [/mm] r$ Untermatrix $B$ von $A$ existiert mit $detB [mm] \neq [/mm] 0$.
Sei $A [mm] \in K^{n\times n}$ [/mm] mit $A [mm] \neq [/mm] 0$.

(a) Zeigen Sie, dass [mm] $detrang(A)\ge [/mm] rang(A)$

(b) Zeigen Sie, dass $detrang(A) [mm] \leq [/mm] rang(A)$


Guten Tag
ich sitze schon eine weile an der Aufgabe oben, komme aber einfach nicht weiter.
Mir fehlt jeglicher Ansatz und wäre sehr Dankbar über kleine Denkanstöße und Tipps!

Vielen Dank
DudiPupan

        
Bezug
Determinantenrang: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 03.06.2012
Autor: Schadowmaster

moin,

Wie berechnest du den (klassischen) Rang einer Matrix?
Nimmst du dafür den Gaußalgorithmus?
Zeige am besten, dass der Gaußalgorithmus den Determinantenrang nicht änert, indem du es für jede der drei Operationen einzeln zeigst.
Wenn dir das noch nicht reicht dann bedenke, dass das Transponieren einer Matrix die Determinante nicht ändert, du kannst also auch auf die Spalten einen Gaußalgorithmus loslassen (das muss natürlich noch gezeigt werden).
Hast du dann deine Matrix mit dem Zeilen- und Spaltengauß auf eine schöne Form gebracht, so kannst du Rang und Determinantenrang praktisch auf dieselbe Art ablesen und siehst daran, dass sie gleich sind.

lg

Schadowmaster

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de