www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Determinationskoeffizient
Determinationskoeffizient < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinationskoeffizient: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:43 Di 11.10.2011
Autor: Paul1985

Aufgabe
[mm] \vmat{ x & 5 & 12 & 21 & 18 & 8 & 12 & 15 & 5 & 29 \\ y & 8 & 15 & 23 & 12 & 5 & 23 & 13 & 14 & 31 } [/mm]

Berechnen Sie den Determinationskoeffizienten


Hallo,
der Formeleditor kann ja richtig viel... Aber Tabellen habe ich nicht gefunden :)

Zur Aufgabe.

Den Determinationskoeffizienten berechnet man mit

[mm] r^{2} [/mm] = [mm] \bruch{\summe_{i=1}^{n} (\gamma_{i}-\overline{y})^{2}}{\summe_{i=1}^{n} (y_{i}-\overline{y})^{2}} [/mm]

da mir [mm] \gamma [/mm] fehlt, kann ich über den Korrelationskoeffizienten gehen, welchen ich dann quadrieren muss.

r = [mm] \bruch{ n *\summe_{i=1}^{n} xy - ( \summe_{i=1}^{n} x \* \summe_{i=1}^{n} y )}{ \wurzel{n* \summe_{i=1}^{n} x^2 - (\summe_{i=1}^{n} x)^{2}}* \wurzel{n* \summe_{i=1}^{n} y^2 - (\summe_{i=1}^{n} y)^{2}} } [/mm]

n = 9

[mm] \summe_{i=1}^{n} [/mm] x = 125
[mm] \summe_{i=1}^{n} [/mm] y =  144
[mm] \summe_{i=1}^{n} [/mm] xy =  2399

[mm] \summe_{i=1}^{n} x^{2} [/mm] = 2233
[mm] \summe_{i=1}^{n} y^{2} [/mm] = 2842

einsetzen....

r = [mm] \bruch{9 * 2399 - (125*144)}{\wurzel{9*2233-125^{2}} \* \wurzel{9 * 2842 - 144^{2}}} [/mm]

[mm] r^{2} [/mm] = 0.5955


Könnt Ihr mir bitte sagen, ob ich das so rechnen kann?
Oder kann ich hier nicht über den korrelationskoeffizienten gehen?

Danke
Paul

        
Bezug
Determinationskoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Di 11.10.2011
Autor: luis52

Moin Paul

grundsaetzlich kannst du das so rechnen, wenngleich deine Rechnung anscheinend falsch ist. Ich erhalte mit R: [mm] $r^2=0.5955$. [/mm] Deine Zwischenrechnungen sind aber korrekt ...

vg Luis

Bezug
                
Bezug
Determinationskoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 29.01.2012
Autor: Paul1985

Hallo,
ich habe leider mit dieser Aufgabe wieder zu tun.

Irgendwo muss dort ein Fehler sein, auch in Deinem Ergebnis Luis :(

Ich habe nämlich als mögliche Lösungen (eine davon ist richtig):
0.85324
0.15338
0.63184
-0.15338
-0.63184
0.22837
-0.39923
0.39923

Habe die ganze Aufgabe nun 3 mal durchgerechnet, aber ich komme einfach nicht drauf.

Irgendwo muss ja der Hund begraben sein...

Bezug
                        
Bezug
Determinationskoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 So 29.01.2012
Autor: luis52


> Hallo,
>  ich habe leider mit dieser Aufgabe wieder zu tun.
>  
> Irgendwo muss dort ein Fehler sein, auch in Deinem Ergebnis
> Luis :(

Kann keinen Fehler finden.

vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de