www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DgL2
DgL2 < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DgL2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:51 Mi 21.02.2007
Autor: useratmathe

Aufgabe
Löse
y"-2y'+y=sinh x
- y(0)=1
- y'(0)=0

Hallo,

gleich noch ein Problem, ich steck irgendwie fest mit dem Resonanzfall hier:
als Loesung der charakt. Gleichung habe ich [mm] \lambda_{1/2}=1 [/mm]

[mm] y_{h}=C_{1}e^{x}+C_{2}xe^{x} [/mm]
und [mm] sinh=1/2e^x-1/2e^{-x} [/mm]

[mm] y_{p}=(Ae^{x}-Be^{-x})x=Axe^x-Bxe^{-x} [/mm]

und irgendwie komm ich dann nach meinen abgeleiteten partiellen Lsgen nur auf 4B=0??
...komisch...

Danke Tim

        
Bezug
DgL2: Lösung
Status: (Antwort) fertig Status 
Datum: 10:44 Mi 21.02.2007
Autor: wauwau


> Löse
> y"-2y'+y=sinh x
>  - y(0)=1
>  - y'(0)=0
>  Hallo,
>  
> gleich noch ein Problem, ich steck irgendwie fest mit dem
> Resonanzfall hier:
>  als Loesung der charakt. Gleichung habe ich
> [mm]\lambda_{1/2}=1[/mm]
>  
> [mm]y_{h}=C_{1}e^{x}+C_{2}xe^{x}[/mm]
>  und [mm]sinh=1/2e^x-1/2e^{-x}[/mm]
>  
> [mm]y_{p}=(Ae^{x}-Be^{-x})x=Axe^x-Bxe^{-x}[/mm]
>  
> und irgendwie komm ich dann nach meinen abgeleiteten
> partiellen Lsgen nur auf 4B=0??
>  ...komisch...
>  
> Danke Tim


Partiell Lösung für

[mm]y'' - 2y' + y = \bruch{1}{2}e^{x}-\bruch{1}{2}e^{-x}[/mm]

(ii) beide seiten mit [mm] e^{-x} [/mm] multipliziert ergibt

[mm]y''e^{-x} - 2y'e^{-x} + ye^{-x} = \bruch{1}{2} - \bruch{1}{2}e^{-2x}[/mm]

links steht jetzt aber nichts anderes als die 2. Ableitung von

[mm] (ye^{-x})'' [/mm]

zweimalige Integration ergibt:

[mm] ye^{-x} [/mm] = [mm] \bruch{x^{2}}{4} [/mm] - [mm] \bruch{1}{8}e^{-2x} [/mm]

bzw.

y =  [mm] \bruch{x^{2}e^{x}}{4} [/mm] - [mm] \bruch{1}{8}e^{-x} [/mm]

und damit hast du deine partielle Lösung

Diese Methode (ohne zuerst die homogene zu lösen) hättest du sofort anwenden können, nur musst du dann beim zweifach integral noch die unbestimmten glieder hinzufügen

also


[mm](ye^{-x})'' = \bruch{1}{2} - \bruch{1}{2}e^{-2x}[/mm]

gibt

[mm]ye^{-x} = \bruch{x^{2}}{4} - \bruch{1}{8}e^{-2x} + Cx + D[/mm]

und daher

[mm]y = \bruch{x^{2}e^{x}}{4} - \bruch{1}{8}e^{-x} + Cxe^{x} + De^{x} [/mm]


Das Bestimmen von C und D durch die Anfangswerte überlasse ich dir..



Bezug
                
Bezug
DgL2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Mi 21.02.2007
Autor: useratmathe

dankeschön!
Wow, sag ich da nur, irgendwie wäre ich da wohl nicht drauf gekommen...
...erst recht nicht, wenn ich etwa 15min Zeit habe für die Aufgabe in der Klausur.
Ist das Routine, also hast du sowas schonmal gehabt oder sieht man sowas nach der Zeit einfach?

LG Tim


Bezug
                        
Bezug
DgL2: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Do 22.02.2007
Autor: wauwau

Da i.a. inhomogene DGL sehr schwer zu lösen sind, ist es immer einen Versuch wert, die linke Seite mit einem inversen Teil der rechten zu multiplizieren und zu schauen, ob die Linke Seite nicht eine einfache 'einfache' oder eine einfache 'zweifache' Ableitung (nach Kettenregel) eine neuen Funktion y.irgendeine andere ist. Vor allem wenn die Lösung der homogenen einen Resonanzfall ergibt.

Eine weitere allg. methode ist zu substituieren
y = y.g mit unbekanntem g, die linke Seite auszurechnen und g zu 'erraten'

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de