www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Diagbarkeit im Komplexen
Diagbarkeit im Komplexen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagbarkeit im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 21.01.2015
Autor: mathenoob3000

Aufgabe
Es sei A = [mm] \begin{pmatrix} 1 & 0 & 0 & b \\ b & 1 & a & 1 \\ 0 & 1 & a & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in [/mm] Mat(4 x 4, [mm] \mathbb{C} [/mm] ), a,b [mm] \in \mathbb{C} [/mm]

Untersuchen sie A auf Diagonalisierbarkeit

Hi
kurze Frage(n):

Als charakteristisches Polynom habe ich bekommen:
[mm] $P_A [/mm] = [mm] (1-t)((1-t)^2(a-t)-a(1-t))$ [/mm]

Und somit die Eigenwerte:
[mm] $\lambda_1 [/mm] = 1, [mm] \lambda_2 [/mm] = 0, [mm] \lambda_3 [/mm] = a+1$

Mein Frage ist jetzt was sind die Vielfachheiten der Eigenwerte.
Ist die Vielfachheit von [mm] \lambda_1 [/mm] = 2 oder 3 ? Was sind die von [mm] \lambda_2 [/mm] bzw. [mm] \lambda_3 [/mm] ?

Ausserdem haben wir den Satz (Fundamentalsatz der Algebra) dass jedes Polynom in [mm] \mathbb{C} [/mm] in Linearfaktoren zerfällt. Kann ich das einfach so verwenden oder muss ich das obige charakteristische Polynom noch irgendwie in Linearfaktoren zerlegen damit ich folgendes verwenden kann:

A ist diagonalisierbar [mm] \Leftrightarrow [/mm]
(a) [mm] P_A [/mm] zerfällt in Linearfaktoren
(b) [mm] \forall [/mm] Eigenwerte [mm] \lambda [/mm] von A: Vielfachheit v0n [mm] \lambda [/mm] = dim(Eig(A, [mm] \lambda)) [/mm]

Jetzt kann ich ja zeigen dass dim(Eig(A, [mm] \lambda_1) [/mm] = 1 und da die Vielfachheit von [mm] \lambda_1 [/mm] > 1 ist [mm] \Rightarrow [/mm] A nicht diagonalisierbar

lg

        
Bezug
Diagbarkeit im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 21.01.2015
Autor: fred97


> Es sei A = [mm]\begin{pmatrix} 1 & 0 & 0 & b \\ b & 1 & a & 1 \\ 0 & 1 & a & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in[/mm]
> Mat(4 x 4, [mm]\mathbb{C}[/mm] ), a,b [mm]\in \mathbb{C}[/mm]
>  
> Untersuchen sie A auf Diagonalisierbarkeit
>  Hi
>  kurze Frage(n):
>  
> Als charakteristisches Polynom habe ich bekommen:
>  [mm]P_A = (1-t)((1-t)^2(a-t)-a(1-t))[/mm]
>  
> Und somit die Eigenwerte:
>  [mm]\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = a+1[/mm]
>  
> Mein Frage ist jetzt was sind die Vielfachheiten der
> Eigenwerte.
>  Ist die Vielfachheit von [mm]\lambda_1[/mm] = 2 oder 3 ? Was sind
> die von [mm]\lambda_2[/mm] bzw. [mm]\lambda_3[/mm] ?

Das hängt noch von a ab.

Ist a=0, so ist 1 ein dreifacher Eigenwert

Ist a=1, so ist 1 ein doppelter Eigenwert.

......


>  
> Ausserdem haben wir den Satz (Fundamentalsatz der Algebra)
> dass jedes Polynom in [mm]\mathbb{C}[/mm] in Linearfaktoren
> zerfällt. Kann ich das einfach so verwenden oder muss ich
> das obige charakteristische Polynom noch irgendwie in
> Linearfaktoren zerlegen damit ich folgendes verwenden
> kann:
>  
> A ist diagonalisierbar [mm]\Leftrightarrow[/mm]
> (a) [mm]P_A[/mm] zerfällt in Linearfaktoren
>  (b) [mm]\forall[/mm] Eigenwerte [mm]\lambda[/mm] von A: Vielfachheit v0n
> [mm]\lambda[/mm] = dim(Eig(A, [mm]\lambda))[/mm]
>  
> Jetzt kann ich ja zeigen dass dim(Eig(A, [mm]\lambda_1)[/mm] = 1 und
> da die Vielfachheit von [mm]\lambda_1[/mm] > 1 ist [mm]\Rightarrow[/mm] A
> nicht diagonalisierbar

Ja, so ist es.

FRED

>  
> lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de