www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Diagonalform - Eigenvektoren
Diagonalform - Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalform - Eigenvektoren: Korrektur / Nachfrage
Status: (Frage) beantwortet Status 
Datum: 17:50 So 29.06.2014
Autor: rsprsp

Aufgabe
die Matrix

A := [mm] \pmat{ 2 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 1 & 3} [/mm]

Ich soll Eigenwerte / Eigenvektoren und Diagonalenform berechnen und mit Hilfe der Diagonalenform C und [mm] C^{-1}, A^{4} [/mm] berechnen

die char. Polynome : [mm] -x^{3}+7x^{2}-11x+5 [/mm]

Eigenwerte: [mm] x_{1}=5, x_{2}=1 [/mm]

Eigenvektoren:

[mm] E_{5} [/mm] = { [mm] \IR \vektor{1 \\ 1 \\ 1} [/mm] }

bei [mm] E_{1} [/mm] kommen die 3 Gleichungen

x+y+2z = 0

x+y+2z = 0

x+y+2z = 0

Man könnte jetzt 3 Vektoren daraus bauen

[mm] \vektor{0 \\ -2 \\ 1} \vektor{-2 \\ 0 \\ 1} [/mm] und [mm] \vektor{-1 \\ 1 \\ 0} [/mm]

sind jetzt alle 3 Eigenvektoren von [mm] E_{1} [/mm] ? Bei wolframalpha sind nur 2 gegeben.


denn ist die Diagonalenform von B
D := [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5} [/mm]

Ich verstehe noch nicht wie man sie richtig bildet, dazu die Frage: Darf man jetzt die 5 mit den 1-en vertauschen ? also quasi D := [mm] \pmat{ 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm] ?

Und was ist in dieser Aufgabe [mm] A^{4} [/mm] ?

        
Bezug
Diagonalform - Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 29.06.2014
Autor: MaslanyFanclub

Hallo,

> die Matrix
>  
> A := [mm]\pmat{ 2 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 1 & 3}[/mm]
>  Ich soll
> Eigenwerte / Eigenvektoren und Diagonalenform berechnen und
> mit Hilfe der Diagonalenform C und [mm]C^{-1}, A^{4}[/mm] berechnen
>  
> die char. Polynome : [mm]-x^{3}+7x^{2}-11x+5[/mm]
>  
> Eigenwerte: [mm]x_{1}=5, x_{2}=1[/mm]
>  
> Eigenvektoren:
>
> [mm]E_{5}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm]\IR \vektor{1 \\ 1 \\ 1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> bei [mm]E_{1}[/mm] kommen die 3 Gleichungen
>  
> x+y+2z = 0
>  
> x+y+2z = 0
>  
> x+y+2z = 0

Es ist keine sonderlich gute Idee das in dieser Form aufzuschreiben. Schreibs in der form Ax=b mit x,b Vektoren und A Matrix oder gleich als erweiterte Koeffizientenmatrix. Vorteile sind u.a. Weniger Schreibarbeit, erhöhte Übersichtlichkeit.

> Man könnte jetzt 3 Vektoren daraus bauen
>  
> [mm]\vektor{0 \\ -2 \\ 1} \vektor{-2 \\ 0 \\ 1}[/mm] und [mm]\vektor{-1 \\ 1 \\ 0}[/mm]
>  
> sind jetzt alle 3 Eigenvektoren von [mm]E_{1}[/mm] ?

Ja.

> Bei wolframalpha sind nur 2 gegeben.

ich gehe davon aus, dass wolfram eine Basis des Eigenraums angibt. Deine drei Vektoren sind linear abhängig.

>
> denn ist die Diagonalenform von B

ich würd' nicht "die" schreiben sondern "eine". (s.u.)

>  D := [mm]\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5}[/mm]
>  
> Ich verstehe noch nicht wie man sie richtig bildet, dazu
> die Frage: Darf man jetzt die 5 mit den 1-en vertauschen ?

Ja.

> also quasi D := [mm]\pmat{ 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]
> ?
>  
> Und was ist in dieser Aufgabe [mm]A^{4}[/mm] ?

[mm] $A^4:=A\cdot A\cdot [/mm] A [mm] \cdot [/mm] A$ Matrixpotenz.


Bezug
                
Bezug
Diagonalform - Eigenvektoren: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 19:41 So 29.06.2014
Autor: rsprsp

Aufgabe
Die Frage lautet:
Berechnen Sie [mm] A^{4} [/mm] mit Hilfe von C und [mm] C^{−1}. [/mm]

Meine Matrize:

C:= [mm] \pmat{ -2 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 } [/mm]

Könntest du mir mit der Aufgabe helfen?
Ich weiß nicht wie ich anfangen soll.

Bezug
                        
Bezug
Diagonalform - Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 29.06.2014
Autor: MathePower

Hallo rsprsp,

> Die Frage lautet:
>  Berechnen Sie [mm]A^{4}[/mm] mit Hilfe von C und [mm]C^{−1}.[/mm]
>  Meine Matrize:
>  
> C:= [mm]\pmat{ -2 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 }[/mm]
>  
> Könntest du mir mit der Aufgabe helfen?
>  Ich weiß nicht wie ich anfangen soll.


Es ist doch

[mm]A=CDC^{-1}[/mm]

Dann ist

[mm]A^{2}=A*A=\left(CDC^{-1}\right)\left(CDC^{-1}\right)=CDC^{-1}CDC^{-1}=CD^{2}C^{-1}[/mm]


Nun, berechne die 4. Matrixpotenz von A.


Gruss
MathePower

Bezug
                        
Bezug
Diagonalform - Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 So 29.06.2014
Autor: MaslanyFanclub

Der Singular von Matrizen ist Matrix.
Eine Matrize https://de.wikipedia.org/wiki/Matrize
hat mit mathematik nichts am Hut.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de