www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Fr 25.04.2008
Autor: maxi85

Aufgabe
Entscheiden sie, ob die folgenden Matritzen diagonalisierbar sind.

a) [mm] \pmat{ 1 & 2 & 0 & 4 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 } [/mm] b) [mm] \pmat{ -5 & 0 & 7 \\ 6 & 2 & -6 \\ -4 & 0 & 6} [/mm] c) [mm] \pmat{ 2 & 1 & 2 \\ -2 & -2 & -6 \\ 1 & 2 & 5} [/mm]

Wenn ich das richtig verstanden habe ist eine Matrix dann diagonalisierbar, wenn die algebraische gleich der geometrischen Vielfachheit ist.

zur algebraischen vielfachheit: d.i. die potenzen des eigenwertes [mm] \lambda_{i} [/mm]

daher habe ich zunächst die eigenwerte bestimmt.

diese ergeben sich aus a: [mm] (1-t)(2-t)(3-t)^2 [/mm] b: [mm] -(t+1)(t-2)^2 [/mm] c: [mm] -(t-1)(t-2)^2 [/mm]

- muss ich da nun die potenzen aller eigenwerte zusammenrechnen oder die höchste nehmen?
- wie komme ich auf die formel zu a? (hab die in nem buch gefunden)


geometrischen vielfachheit: d.i. die dimension des eigenraumes zum eigenvektor [mm] \lambda_{i} [/mm]

- wenn dem so ist dann kann ich doch aber zu jedem [mm] \lambda_{i} [/mm] einen eigenraum bestimmen. somit habe ich ja i möglichkeiten für die geometrische vielfachheit. das leuchtet mir nicht so richtig ein.

mfg maxi

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 25.04.2008
Autor: MathePower

Hallo maxi,

> Entscheiden sie, ob die folgenden Matritzen
> diagonalisierbar sind.
>  
> a) [mm]\pmat{ 1 & 2 & 0 & 4 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 }[/mm]
> b) [mm]\pmat{ -5 & 0 & 7 \\ 6 & 2 & -6 \\ -4 & 0 & 6}[/mm] c) [mm]\pmat{ 2 & 1 & 2 \\ -2 & -2 & -6 \\ 1 & 2 & 5}[/mm]
>  
> Wenn ich das richtig verstanden habe ist eine Matrix dann
> diagonalisierbar, wenn die algebraische gleich der
> geometrischen Vielfachheit ist.
>
> zur algebraischen vielfachheit: d.i. die potenzen des
> eigenwertes [mm]\lambda_{i}[/mm]
>  
> daher habe ich zunächst die eigenwerte bestimmt.
>  
> diese ergeben sich aus a: [mm](1-t)(2-t)(3-t)^2[/mm] b:
> [mm]-(t+1)(t-2)^2[/mm] c: [mm]-(t-1)(t-2)^2[/mm]
>  
> - muss ich da nun die potenzen aller eigenwerte
> zusammenrechnen oder die höchste nehmen?
>  - wie komme ich auf die formel zu a? (hab die in nem buch
> gefunden)
>  

Die Determinante einer Dreiecksmatrix, wie hier, ist das Produkt ihrer Diagonalelemente.

Allgemein bildet man det[mm]\left(A-t*I\right)[/mm], wobei I die Einheitsmatrix ist, und löst dann det[mm]\left(A-t*I\right)=0[/mm]

Daraus ergeben sich die Eigenwerte samt algebraischer Vielfachheit.

>
> geometrischen vielfachheit: d.i. die dimension des
> eigenraumes zum eigenvektor [mm]\lambda_{i}[/mm]
>  
> - wenn dem so ist dann kann ich doch aber zu jedem
> [mm]\lambda_{i}[/mm] einen eigenraum bestimmen. somit habe ich ja i
> möglichkeiten für die geometrische vielfachheit. das
> leuchtet mir nicht so richtig ein.

Aus der Gleichung det[mm]\left(A-\lambda*I\right)=0[/mm] bekommst Du die Eigenwerte [mm]\lambda_{i}[/mm]. Dann bestimmst Du die Dimension von [mm] Kern\left(A-\lamba_{i}*I\right)=0. [/mm]

Die Gleichheit der algebraischen und geometrischen Vielfachheit ist auf den Eigenwert bezogen.

Ist für einen Eigenwert die geometrische Vielfachheit kleiner als die algebraische Vielfachheit, so ist die entsprechende Matrix nicht diagonalisierbar.

>  
> mfg maxi

Gruß
MathePower

Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Fr 25.04.2008
Autor: maxi85


> Hallo maxi,
>  
> > Entscheiden sie, ob die folgenden Matritzen
> > diagonalisierbar sind.
>  >  
> > a) [mm]\pmat{ 1 & 2 & 0 & 4 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 }[/mm]
> > b) [mm]\pmat{ -5 & 0 & 7 \\ 6 & 2 & -6 \\ -4 & 0 & 6}[/mm] c) [mm]\pmat{ 2 & 1 & 2 \\ -2 & -2 & -6 \\ 1 & 2 & 5}[/mm]
>  
> >  

> > Wenn ich das richtig verstanden habe ist eine Matrix dann
> > diagonalisierbar, wenn die algebraische gleich der
> > geometrischen Vielfachheit ist.
> >
> > zur algebraischen vielfachheit: d.i. die potenzen des
> > eigenwertes [mm]\lambda_{i}[/mm]
>  >  
> > daher habe ich zunächst die eigenwerte bestimmt.
>  >  
> > diese ergeben sich aus a: [mm](1-t)(2-t)(3-t)^2[/mm] b:
> > [mm]-(t+1)(t-2)^2[/mm] c: [mm]-(t-1)(t-2)^2[/mm]
>  >  
> > - muss ich da nun die potenzen aller eigenwerte
> > zusammenrechnen oder die höchste nehmen?
>  >  - wie komme ich auf die formel zu a? (hab die in nem
> buch
> > gefunden)
>  >  
>
> Die Determinante einer Dreiecksmatrix, wie hier, ist das
> Produkt ihrer Diagonalelemente.
>  
> Allgemein bildet man det[mm]\left(A-t*I\right)[/mm], wobei I die
> Einheitsmatrix ist, und löst dann det[mm]\left(A-t*I\right)=0[/mm]
>  
> Daraus ergeben sich die Eigenwerte samt algebraischer
> Vielfachheit.

  
Vielen dank, soweit verstanden. nur eine kurze nachfrage: wie genau ergibt sich / was genau ist die algebraische vielfachheit denn nun? (die anzahl der eigenwerte, die vielfachheit eines eigenwertes oder was dazwischen?)


> >
> > geometrischen vielfachheit: d.i. die dimension des
> > eigenraumes zum eigenvektor [mm]\lambda_{i}[/mm]
>  >  
> > - wenn dem so ist dann kann ich doch aber zu jedem
> > [mm]\lambda_{i}[/mm] einen eigenraum bestimmen. somit habe ich ja i
> > möglichkeiten für die geometrische vielfachheit. das
> > leuchtet mir nicht so richtig ein.
>  
> Aus der Gleichung det[mm]\left(A-\lambda*I\right)=0[/mm] bekommst Du
> die Eigenwerte [mm]\lambda_{i}[/mm]. Dann bestimmst Du die Dimension
> von [mm]Kern\left(A-\lamba_{i}*I\right)=0.[/mm]
>  
> Die Gleichheit der algebraischen und geometrischen
> Vielfachheit ist auf den Eigenwert bezogen.
>  
> Ist für einen Eigenwert die geometrische Vielfachheit
> kleiner als die algebraische Vielfachheit, so ist die
> entsprechende Matrix nicht diagonalisierbar.
>  
> >  

> > mfg maxi
>
> Gruß
>  MathePower


Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Fr 25.04.2008
Autor: schachuzipus

Hallo maxi85,

.

>    
> Vielen dank, soweit verstanden. nur eine kurze nachfrage:
> wie genau ergibt sich / was genau ist die algebraische
> vielfachheit denn nun? (die anzahl der eigenwerte, die
> vielfachheit eines eigenwertes oder was dazwischen?)
>  

Die algebraische Vielfachheit eines Eigenwertes ist die Vielfachheit, in der er als NST im charakteristischen Polynom auftritt

Bsp. [mm] $cp(\lambda)=\lambda(\lambda-\lambda_1)^3$ [/mm]

Die algebraische VFH von [mm] $\lambda=0$ [/mm] ist also 1, die von [mm] $\lambda=\lambda_1$ [/mm] ist 3

Die geometrische VFH hingegen ist die Dimension des Eigenraumes zum jeweiligen Eigenwert

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de