www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 21:19 Do 17.03.2011
Autor: Vilietha

Aufgabe
Für welche a,b ist die Matrix [mm] B=\pmat{-3 & 2b & 10 \\ 0 & a & 0 \\ 0 & b & 2} [/mm] diagonalisierbar?

Hallo zusammen,

Eine Matrix ist ja genau dann diagonalisierbar, wenn sie n (=dim(V)) linear unabhängige Eigenvektoren besitzt. Um herauszufinden, ob eine Matrix diese Eigenschaft hat, kenne ich im allgemeinen Fall nur den Weg, die Eigenwerte zu bestimmen, und dann durch Elimination der entsprechenden charakteristischen Matrizen herauszufinden, wieviele freie Variable es dann gibt. Um zu sehen, ob diese Anzahl mit der algebraischen Vielfachheit der Eigenwerte übereinstimmt.

Aber dieses Vorgehen scheint mir kaum möglich zu sein in diesem Fall...

Leider ist auch nicht angegeben, ob a,b in [mm] \IR [/mm] oder [mm] \IC [/mm] enthalten sind.

Ich hoffe, es kennt jemand einen schönen eleganten Weg, um diese Aufgabe zu lösen. ;-)

Viele Grüße,
Vilietha

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Do 17.03.2011
Autor: MathePower

Hallo Vilietha,

> Für welche a,b ist die Matrix [mm]B=\pmat{-3 & 2b & 10 \\ 0 & a & 0 \\ 0 & b & 2}[/mm]
> diagonalisierbar?
>  Hallo zusammen,
>
> Eine Matrix ist ja genau dann diagonalisierbar, wenn sie n
> (=dim(V)) linear unabhängige Eigenvektoren besitzt. Um
> herauszufinden, ob eine Matrix diese Eigenschaft hat, kenne
> ich im allgemeinen Fall nur den Weg, die Eigenwerte zu
> bestimmen, und dann durch Elimination der entsprechenden
> charakteristischen Matrizen herauszufinden, wieviele freie
> Variable es dann gibt. Um zu sehen, ob diese Anzahl mit der
> algebraischen Vielfachheit der Eigenwerte übereinstimmt.
>
> Aber dieses Vorgehen scheint mir kaum möglich zu sein in
> diesem Fall...
>
> Leider ist auch nicht angegeben, ob a,b in [mm]\IR[/mm] oder [mm]\IC[/mm]
> enthalten sind.
>
> Ich hoffe, es kennt jemand einen schönen eleganten Weg, um
> diese Aufgabe zu lösen. ;-)


Berechne zunächst die Eigenwerte der gegebenen Matrix.

Hat die Matrix 3 verschiedene Eigenwerte, dann ist sie diagonalisierbar.

Dann musst Du noch die Sonderfälle betrachten,
d. h. wenn 2 oder  3 gleiche Eigenwerte vorhanden sind.

Stelle dann die zugehörige Matrix zur Bestimmung
des Eigenraums auf.

Anhand der Dimension dieses Eigenraums kannst Du
auf die Diagonaliserbarkeit der Matrix schliessen.


>  
> Viele Grüße,
>  Vilietha


Gruss
MathePower

Bezug
                
Bezug
Diagonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Do 17.03.2011
Autor: Vilietha

Hallo MathePower,

Vielen Dank für deine hilfreiche Antwort!
Ich werde deinen Vorschlag morgen ausprobieren.

Viele Grüße,
Vilietha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de