www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 02.02.2012
Autor: durden88

Aufgabe
Berechne Sie das charaktristische Polynom, die Eigenwerte und die Eigenvektoren von [mm] A=\pmat{ 2 & 2&3 \\ 1 & 2&1\\2&-2&1 }. [/mm] Ist A Diagonalisierbar?

Hallo, also mir gehts auch um die Schreibweisen. Ich rechne mal vor:

[mm] det(A-\lambda)=\pmat{ 2-\lambda & 2&3 \\ 1 & 2-\lambda&1\\2&-2&1-\lambda }=\lambda^3-5\lambda^2+2\lambda+8 [/mm]

Was ist eigendlich mein Charakteristisches Polynom?

So jetzt will ich die 0-Stellen herausbekommen, also das ganze=0 und Polynomdivision benutzen:

Durch ausprobieren [mm] \lambda_1=2 [/mm]

Dann bekomme ich durch die P-Q-Formel: [mm] \lambda_2=4 [/mm] und [mm] \lambda_3=-1 [/mm]

So das waren die Eigenwerte oder? Eigenvektoren berechne ich gleich noch. Jetzt hab ich noch eine Frage zur Diagonalisierbarkeit.

Ich habe gelernt, notwendige Bedingung: Die Funktion lässt sich vollständig in Linearfaktoren zerlegen. So und da hab ich mir einfach die Nullstellen genommen und multipliziert: [mm] (\lambda-2)(\lambda-4)(\lambda+1) [/mm] und ausmultipliziert, also klappt das, kann ich es so machen?

Hinreichende Bedingung: Die LF müssen paarweise verschieden sein. Jo und das klappt auch...

Wenn ich die Polynomdivision berechnet habe und die P-Q-Formel benutzt habe, bekomme ich [mm] \lambda_2=4 [/mm] und [mm] \lambda_3=-1 [/mm]

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 02.02.2012
Autor: schachuzipus

Hallo durden88,


> Berechne Sie das charaktristische Polynom, die Eigenwerte
> und die Eigenvektoren von [mm]A=\pmat{ 2 & 2&3 \\ 1 & 2&1\\ 2&-2&1 }.[/mm]
> Ist A Diagonalisierbar?
>  Hallo, also mir gehts auch um die Schreibweisen. Ich
> rechne mal vor:
>  
> [mm]det(A-\lambda)=\pmat{ 2-\lambda & 2&3 \\ 1 & 2-\lambda&1\\ 2&-2&1-\lambda }=\lambda^3-5\lambda^2+2\lambda+8[/mm]

Mag sein ...

>  
> Was ist eigendlich mein Charakteristisches Polynom?

Na, das, was oben steht: [mm] $\chi(\lambda)=\lambda^3-5\lambda^2+2\lambda+8$ [/mm]

>  
> So jetzt will ich die 0-Stellen herausbekommen, also das
> ganze=0 und Polynomdivision benutzen:
>  
> Durch ausprobieren [mm]\lambda_1=2[/mm]
>  
> Dann bekomme ich durch die P-Q-Formel: [mm]\lambda_2=4[/mm] und
> [mm]\lambda_3=-1[/mm]
>  
> So das waren die Eigenwerte oder?

Jo, wenn's stimmt, sind das die Eigenwerte

> Eigenvektoren berechne
> ich gleich noch. Jetzt hab ich noch eine Frage zur
> Diagonalisierbarkeit.
>  
> Ich habe gelernt, notwendige Bedingung: Die Funktion lässt
> sich vollständig in Linearfaktoren zerlegen. So und da hab
> ich mir einfach die Nullstellen genommen und multipliziert:
> [mm](\lambda-2)(\lambda-4)(\lambda+1)[/mm] und ausmultipliziert,
> also klappt das, kann ich es so machen?

Jo, hier hast du (zum Glück) 3 verschiedene Nullstellen, das Polynom zerfällt vollst. in (paarweise verschiedene) Linearfaktoren, damit ist für jeden Eigenwert die algebraische Vielfachheit 1, damit auch die geometrische Vielfachheit (denn geom. VFH [mm] $\le$ [/mm] algebr. VFH und alg. VFH mind. 1)

Damit kannst du sicher sein, dass die Matrix diagonalisierbar ist.

Krit.: Für jeden Eigenwert muss die algebraische VFH (also die VFH als Nullstelle im char. Polynom) gleich der geometr. VFH (=Dimension des zugeh. Eigenraumes) sein.

>  
> Hinreichende Bedingung: Die LF müssen paarweise
> verschieden sein. Jo und das klappt auch...
>  
> Wenn ich die Polynomdivision berechnet habe und die
> P-Q-Formel benutzt habe, bekomme ich [mm]\lambda_2=4[/mm] und
> [mm]\lambda_3=-1[/mm]  

Das mag stimmen, aber ohne die Rechnung zu sehen, kann man das schlecht beurteilen ...

Gruß

schachuzipus


Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 02.02.2012
Autor: durden88

Ok, vielen dank. Vor jedem Rechenschritt muss ich ja eine Bedinungung hinschreiben.

Also zum ausrechnen des Charakteristischen Polynoms reicht es wenn ich schreibe: [mm] \chi(\lambda)= [/mm] Dann meine Matrix [mm] mit-\lambda [/mm] in der Diagonalen und dann die Determinante davon ausrechnen?

Dann bekomm ich ja meine Eigenwerte. Wie ist es bei den Eigenvektoren? Gibt es da auch was, was ich hinschreiben kann, ich möchte nicht nur einfach [mm] \vec{x}= [/mm] hinschreiben...

Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Do 02.02.2012
Autor: schachuzipus

Hallo nochmal,


> Ok, vielen dank. Vor jedem Rechenschritt muss ich ja eine
> Bedinungung hinschreiben.
>  
> Also zum ausrechnen des Charakteristischen Polynoms reicht
> es wenn ich schreibe: [mm]\chi(\lambda)=[/mm] Dann meine Matrix
> [mm]mit-\lambda[/mm] in der Diagonalen und dann die Determinante
> davon ausrechnen?

Jo, etwa so:

[mm]\chi(\lambda)=\operatorname{det}(A-\lambda\mathbb{E}_3)=\operatorname{det\left[ \ \pmat{...} \ \right]=...=\lambda^3...[/mm]

>  
> Dann bekomm ich ja meine Eigenwerte. Wie ist es bei den
> Eigenvektoren? Gibt es da auch was, was ich hinschreiben
> kann, ich möchte nicht nur einfach [mm]\vec{x}=[/mm]
> hinschreiben...

Irgendwie so:

1) Berechne zu [mm]\lambda_1=...[/mm] den [mm]\operatorname{ker(A-\lambda_1\mathbb{E}_3)[/mm]:

Dann die Matrix hinschreiben und in ZSF bringen und so eine Basis des Kernes bestimmen.

Dann "Ein Eigenvektor zum Eigenwert [mm]\lambda_1=..[/mm] ist [mm]\vec{x}=...[/mm]"

Dann genauso für die anderen beiden Eigenwerte [mm]\lambda_{2,3}[/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de