www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Diagonalisierbarkeit Matrizen
Diagonalisierbarkeit Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Do 04.05.2006
Autor: Kuebi

Hallo ihr!

Hab mal ne Frage zur Diagonaliserbarkeit von Matrizen:

Wenn ich eine Matrix auf Diagonaliserbarkeit überprüfen soll, gehe ich folgendermaßen vor:
Ich berechne das charakteristische Polynom und daraus folgend die Eigenwerte der Matrix.
Nun gilt ja, dass die Matrix diagonalisierbar ist, wenn die geometrische Vielfachheit gleich der algebraischen ist, dass die Matrix diagonalisierbar ist. Im Falle dass die geometrische VFH kleiner als die algebraische Vielfachheit ist, ist sie nicht mehr diagonaliserbar.

Okay, soweit so gut.
Meine Frage nun: Eine Matrix kann ja durchaus mehrerer Eigenwerte besitzen :-) Infolgedessen auch mehrere Eigenräume zu den jeweiligen Eigenwerten.
Tritt nun der Fall ein, dass für einen Eigenwert der Matrix die geom. VFH gleich der algebr. VFH ist für einen anderen Eigenwert die geom. VFH echt kleiner als die algebr. VFH, ist die Matrix dann diagonalieserbar???

Ich hoffe dass ich einigermaßen verständlich geschrieben habe! Vielleicht hab ich auch irgendwo einen Verständnisfehler!

Lg, Kübi

        
Bezug
Diagonalisierbarkeit Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Do 04.05.2006
Autor: Ashvini

Hallo Kübi!

Es ist schon möglich, dass dieser Fall auftritt.

Jede Matrix ist genau dann diagonalisierbar, wenn die algebraische Vielfachheit zum einem Eigenwert  [mm] \lambda_{i} [/mm] gleich der geometrischen Vielfachheit ist, für alle i! Das heißt, wenn man zwei Eigenwerte hat, muss bei jedem dieser zwei Eigenwerte die algebraische Vielfachheit gleich der geometrischen Vielfachheit sein. Falls es bei einem Eigenwert nicht der Fall sein sollte, so ist die Matrix nicht diagonalisierbar!

Ich hoffe, ich konnte dir weiterhelfen!

Lg,
Ashvini

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de