www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierung
Diagonalisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 23.09.2008
Autor: Dr.Weber

Hi kann mir jemand etwas zur Diagonalisierung von Matrizen sagen. wie sieht eine Matrix aus wenn sie symmetrisch und reell ist.
Wie müssen Eigenwerte aussehen wenn sie paarweiße verschieden sind.
Komm hier echt nicht weiter.
Gruß Dr.Weber

        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Di 23.09.2008
Autor: schachuzipus

Hallo Dr. Weber,

> Hi kann mir jemand etwas zur Diagonalisierung von Matrizen
> sagen.

Nun, eine (quadratische) Matrix $A$ ist diagonalisierbar, wenn es eine invertierbarer Matrix $T$ gibt mit [mm] $T^{-1}AT=D$, [/mm] wobei $D$ eine Diagonalmatrix ist, die die Eigenwerte von $A$ auf der Diagonalen stehen hat (und sonst nur Nullen als Einträge hat).

$A$ ist also diagonalisierbar, wenn sie ähnlich zu einer Diagonalmatrix ist

Kriterien für Diagonalisierbarkeit habt ihr bestimmt in der VL gehabt, ich werfe mal einige Stichworte ein: charakteristisches Polynom, Zusammenhang zwischen algebraischer und geometrischer Vielfachheit.. [mm] $\leftarrow$ nachschlagen !! > wie sieht eine Matrix aus wenn sie symmetrisch und reell ist. Eine (quadratische) Matrix $A$ ist symmetrisch, falls $A=A^T$ ist, falls $A$ also mit ihrer transponierten Matrix übereinstimmt. Die Eigenwerte einer symmetrischen Matrix sind stets reell. Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal > Wie müssen Eigenwerte aussehen wenn sie paarweiße > verschieden sind. manchmal gibt's auch schwarze ... ;-) "paarwei[u]s[/u]e verschieden" bedeutet, dass je 2 verschieden sind, dh. hast du $\lambda_1,\lambda_2,....,\lambda_n$ als Eigenwerte, so bedeutet paarweise verschieden, dass $\lambda_i\neq\lambda_j$ für $i\neq j$ (i,j=1,...,n) > Komm hier echt nicht weiter. > Gruß Dr.Weber LG schachuzipus [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de