www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Diagonalmatrix?
Diagonalmatrix? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix?: Frage
Status: (Frage) beantwortet Status 
Datum: 22:42 Mi 06.07.2005
Autor: holg47

Hallo!

Ich hätte eine Frage bezüglich Namen von Matrizen
Also ich weiß: Es sei f: V [mm] \to [/mm] V ein Endomorphismus. Eine Matrix A ist diagonalsierbar, wenn es eine Basis von V aus Eigenvektoren von A gibt.

Eine Matrix, die NICHT diagonalisierbar ist, ist z.B die obere Dreiecksmatrix, also:

A= [mm] \pmat{ 1 & 1 \\ 0 & 1 } [/mm]  Es gibt hier KEINE Basis, die nur aus Eigenvektoren besteht (algebr. Vielfachh  [mm] \not= [/mm]  geom. Vielfachh.)

ABER: Ich kann doch die Matrix A durch Zeilenumformung (1. Zeile minus der 2. Zeile) auf eine MAtrix B der Form:

B = [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] bringen. Dies Matrix besteht NICHT aus Eigenvektoren. ABER sie ist doch diagonal!! Wie heißt dann diese Matrix?

Wie nennt man jetzt so eine Matrix die nicht diagonalisierbar ist (also es gibt keine Basis aus Eigenvektoren), die aber nur Einträge auf der Hauptdiagonalen hat???

Vielen Dank!

        
Bezug
Diagonalmatrix?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 06.07.2005
Autor: taura

Hallo Holger!

> Ich hätte eine Frage bezüglich Namen von Matrizen
>  Also ich weiß: Es sei f: V [mm]\to[/mm] V ein Endomorphismus. Eine
> Matrix A ist diagonalsierbar, wenn es eine Basis von V aus
> Eigenvektoren von A gibt.
>  
> Eine Matrix, die NICHT diagonalisierbar ist, ist z.B die
> obere Dreiecksmatrix, also:
>  
> A= [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm]  Es gibt hier KEINE Basis, die
> nur aus Eigenvektoren besteht (algebr. Vielfachh  [mm]\not=[/mm]  
> geom. Vielfachh.)
>  
> ABER: Ich kann doch die Matrix A durch Zeilenumformung (1.
> Zeile minus der 2. Zeile) auf eine MAtrix B der Form:
>  
> B = [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] bringen. Dies Matrix besteht
> NICHT aus Eigenvektoren. ABER sie ist doch diagonal!! Wie
> heißt dann diese Matrix?

Diese Matrix, die du dir da gebastelt hast, ist sehr wohl diagonalisierbar, denn sie ist ja bereits diagonal. ABER: Du hast durch deine Zeilenumformung eine neue Abbildung definiert. Diagonalisieren heißt nicht, per Gauß-Verfahren umformen. Diagonalisiert wird eine Abbildungsmatrix durch einen Basiswechsel, bei dem dann eine diagonale Matrix rauskommt. Was du gemacht hast, verändert die Abbildung. Die Abbildung die durch die Matrix A dargestellt wird, ist eine andere, als die, die durch Matrix B dargestellt wird. Die erstere ist nicht diagonalisierbar, denn du wirst keine Basis finden, so dass die Matrix bezüglich dieser Basis dargestellt diagonal ist. Die zweite ist aber diagonalisierbar, denn sie ist insbesondere die Identität, und insofern bezüglich jeder Basis diagonal.

> Wie nennt man jetzt so eine Matrix die nicht
> diagonalisierbar ist (also es gibt keine Basis aus
> Eigenvektoren), die aber nur Einträge auf der
> Hauptdiagonalen hat???

Eine solche Matrix gibt es demnach nicht. Wenn sie nur Einträge auf der Hauptdiagonalen hat, dann ist sie diagonal, also natürlich auch diagonalisierbar. Hilft dir das weiter? Ich hoffe, sonst frag einfach nochmal nach!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de