www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichte
Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Fr 18.07.2014
Autor: rollroll

Aufgabe
Die ZV X habe die Dichte
[mm] f_{\alpha}(x)=(1/4+1/4 \alpha [/mm] x) [mm] \I1_{ [-2;2] } [/mm] (x). mit [mm] \alpha \in [/mm] [-0,5;0,5]

a) Bestimme die Verteilungsfunktion von X in Abhängigkeit von [mm] \alpha. [/mm]
b) Bestimme den Erwartungswert von X in Abhängigkeit von [mm] \alpha. [/mm]

Hallo,

zu a)
[mm] \integral_{-2}^{x}{1/4+1/4 \alpha z dz} [/mm] = 1/8 [mm] \alpha x^2+ [/mm] 1/4 x +1/2 -1/2 [mm] \alpha [/mm]

Also: [mm] F_X(x)=1/8 \alpha x^2+ [/mm] 1/4 x +1/2 -1/2 [mm] \alpha [/mm] für -2 [mm] \le [/mm] x [mm] \le [/mm] 2 und 0 sonst.

zu b) [mm] \integral_{-2}^{2}{x*f(x) dx} [/mm] = 4/3 [mm] \alpha. [/mm]


Für eine Korrektur wäre ich sehr dankbar.

        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Fr 18.07.2014
Autor: DieAcht

Hallo,


> Die ZV X habe die Dichte
>  [mm]f_{\alpha}(x)=(1/4+1/4 \alpha[/mm] x) [mm]\I1_{ [-2;2] }[/mm] (x). mit
> [mm]\alpha \in[/mm] [-0,5;0,5]
>  
> a) Bestimme die Verteilungsfunktion von X in Abhängigkeit
> von [mm]\alpha.[/mm]
>  b) Bestimme den Erwartungswert von X in Abhängigkeit von
> [mm]\alpha.[/mm]
>  Hallo,
>  
> zu a)
>  [mm]\integral_{-2}^{x}{1/4+1/4 \alpha z dz}[/mm] = 1/8 [mm]\alpha x^2+[/mm]
> 1/4 x +1/2 -1/2 [mm]\alpha[/mm]
>  
> Also: [mm]F_X(x)=1/8 \alpha x^2+[/mm] 1/4 x +1/2 -1/2 [mm]\alpha[/mm] für -2
> [mm]\le[/mm] x [mm]\le[/mm] 2 und 0 sonst.

Richtig, aber durch ein wenig Zusammenfassen und Benutzung
der Indikatorfunktion wäre das mit Sicherheit schöner.

> zu b) [mm]\integral_{-2}^{2}{x*f(x) dx}[/mm] = 4/3 [mm]\alpha.[/mm]

Richtig, aber an die Dichte würde ich noch das [mm] \alpha [/mm] anhängen.

Außerdem kannst du dir noch überlegen, dass folgendes gilt:

      [mm] \mathbb E(X)\in[-\frac{2}{3},\frac{2}{3}]. [/mm]

> Für eine Korrektur wäre ich sehr dankbar.


Gruß
DieAcht

Bezug
                
Bezug
Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Fr 18.07.2014
Autor: rollroll

Danke für deine Antwort!  Wie meinst du das denn bei der a? Wie genau kann man das anders schreiben?

Bezug
                        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Fr 18.07.2014
Autor: DieAcht


> Danke für deine Antwort!  Wie meinst du das denn bei der
> a? Wie genau kann man das anders schreiben?  

Das habe ich dir doch bereits geschrieben: Indikatorfunktion.
Das wurde doch auch bei der Dichte gemacht. ;-)

Bezug
                                
Bezug
Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Fr 18.07.2014
Autor: rollroll

Ja, ich könnte natürlich einfach noch die indikatorfunktion dahinter schreiben.  Aber dadurch wird der Term ja nicht leichter.

Bezug
                                        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Fr 18.07.2014
Autor: DieAcht


> Ja, ich könnte natürlich einfach noch die
> indikatorfunktion dahinter schreiben.  Aber dadurch wird
> der Term ja nicht leichter.  

Das habe ich nie geschrieben. Es wird nur schöner und vor
Allem benutzt ihr die Indikatorfunktion bei der Angabe der
Dichte, wieso also nicht auch bei der Verteilungsfunktion?
Damit erspart man sich die Eigenschaft

      [mm] $-2\le x\le [/mm] 2$

dahinter zuquetschen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de