www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichte
Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte: Zähldichte / Erwartungswert
Status: (Frage) beantwortet Status 
Datum: 12:04 Fr 04.02.2011
Autor: wolle238

Aufgabe
a) Sei $f : [mm] \IR \rightarrow \R, [/mm] f(x) = c [mm] \cdot \alpha^{|x|}$ [/mm] und [mm] $\alpha [/mm] > 0$. Bestimmen Sie [mm] $\alpha, [/mm] c [mm] \in \IR$ [/mm] so, dass $f$ eine (Riemann-) Wahrscheinlichkeitsdichte ist.
b) Sei $g: [mm] \IR \rightarrow \R, [/mm] g(x) = c [mm] \cdot \bruch{\lambda^{|x|}}{|x|!} 1_{\IZ}(x)$ [/mm] und [mm] $\lambda [/mm] > 0$. Bestimmen Sie $c [mm] \in \IR$ [/mm] so, dass $g$ eine Zähldichte ist.
c) Existiert [mm] $\mathbb{E}[X]$, [/mm] wenn $X$ die Dichten $f,g$ besitzt? Bestimmen Sie gegebenenfalls [mm] $\mathbb{E}[X]$. [/mm]




Hey ihr...

hänge bei Aufgabe b).

Zu a) zu zeigen: $f(x) = c [mm] \cdot \alpha^{|x|}$ [/mm] ist Wahrscheinlichkeitsdichte
* [mm]f(x) \geq 0[/mm]
  Es gilt, da [mm]\alpha^{|x|} > 0[/mm]  für [mm]\alpha > 0 \Rightarrow c > 0[/mm].
* [mm]\integral_{-\infty}^{\infty}{f(x) dx} = 1[/mm]

[mm]\integral_{- \infty}^{\infty}{f(x) dx} = \integral_{-\infty}^{\infty}{c \cdot \alpha^{|x|} dx} = c \cdot 2 \cdot \integral_{0}^{\infty}{\alpha^x dx} = 2c \cdot \left[ \bruch{\alpha^x}{\log(\alpha)} \right]_{0}^{\infty} = \bruch{2c}{\log(\alpha)} \left( \lim_{x \rightarrow \infty} (a^x) - 1 \right)[/mm].

1. Fall [mm]0 \leq \alpha < 1[/mm]
[mm] \Rightarrow 1 = - \bruch{2c}{\log(\alpha)}[/mm]
[mm]-\bruch{\log(\alpha)}{2} = c[/mm].

2. Fall [mm]\alpha = 1[/mm] Da [mm]\log(1) = 0[/mm] ist das nicht definiert.

3. Fall [mm]1 < \alpha[/mm] ist [mm]\lim_{x \rightarrow \infty} (\alpha^x) = \infty[/mm]. Somit wird das nie 1.

Also erhalten wir:
[mm]\Rightarrow \alpha[/mm]und [mm]c[/mm] sind voneinander abhängig und es gilt [mm]0 \leq \alpha < 1[/mm] und [mm]\log(\alpha) = -2c[/mm]

zu b) zu zeigen:
[mm]g(x) = c \cdot \bruch{\lambda^{|x|}}{|x|!} 1_{\IZ}(x) [/mm] ist eine Zähldichte.

Es gilt
[mm]g(x) = \left\{ \begin{matrix} c \cdot \bruch{\lambda^{x}}{x!}, & x \in \IZ \\ 0 & x \in \IR \backslash \IZ \end{matrix} \right.[/mm].

nun muss gelten: [mm]\summe_{x \in \IR}^{} g(x) = 1[/mm].

Ich habe bisher:
[mm]\summe_{x \in \IR}^{} g(x) = \summe_{x \in \IZ} c \cdot \bruch{\lambda^x}{x!}[/mm]
Lass ich mir nun bei Wolfram Alpha die Summe ausrechnen (leider geht das in der Klausur nicht :( ), erhalte ich:
[mm]c \cdot e^{\lambda} = 1 \Rightarrow c = \bruch{1}{e^{\lambda}}[/mm]

Muss man solche Summen kennen oder gibts da einen Tipp um diese zu berechnen??

zu c)
Damit [mm] $\mathbb{E}[X]$ [/mm] existiert, muss [mm] $\integral_{-\infty}^{\infty} |x| \cdot [/mm] f(x) dx < + [mm] \infty$ [/mm] sein.
Wenn ich das nachrechne, erhalte ich:

[mm] $\integral_{-\infty}^{\infty} [/mm] |x| [mm] \cdot [/mm] f(x) dx = [mm] \integral_{-\infty}^{\infty} [/mm] |x| [mm] \cdot [/mm] c [mm] \cdot \alpha^{|x|} [/mm] dx = [mm] 2c\integral_{0}^{\infty} [/mm] x [mm] \cdot \alpha^x [/mm] dx = 2 [mm] \cdot [/mm] c [mm] \cdot \bruch{\alpha^x (x \log(\alpha) - 1)}{\log^2(\alpha)} [/mm] = 2 [mm] \cdot \bruch{- \log(\alpha)}{2} \cdot \bruch{\alpha^x (x \log(\alpha) - 1)}{\log^2(\alpha)} [/mm]  = - [mm] \bruch{\alpha^x (x \log(\alpha) - 1)}{\log(\alpha)} [/mm] $.

Sind meine Überlegungen soweit richtig? Hab ich irgendwas übersehen?

Danke für eure Hilfe,
Julia

        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Fr 04.02.2011
Autor: Fry

Hallo,

also der erste Teil ist komplett richtig [ok]
Es muss aber heißen 0<a<1.

Gruß
Fry


Bezug
                
Bezug
Dichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Fr 04.02.2011
Autor: Fry


...allerdings fehlt bei a)
a)f stückweise stetig für alle a>0 und [mm] c\in\IR [/mm]
b) [mm] f(x)\ge0 [/mm] für alle [mm] x\in\IR. [/mm]
[mm] a^{|x|}>0 [/mm] => [mm] c\ge [/mm] 0, wobei natürlich c=0 nicht eintreten kann.


Bezug
                        
Bezug
Dichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 Fr 04.02.2011
Autor: wolle238

Danke!!
Punkt b) hatte ich vergessen mit hinzuschreiben... aber ja... :)

Meine Probleme bei dieser Aufgabe lagen eher bei b) und c)....
Sind die denn auch richtig??

Bezug
                                
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Fr 04.02.2011
Autor: Gonozal_IX

Huhu,

dein aufschreiben bei b) ist sehr gewönungsbedürftig!


> Es gilt$
> g(x) = $ [mm] \left\{ \begin{matrix} c \cdot \bruch{\lambda^{x}}{x!}, & x \in \IZ \\ 0 & x \in \IR \backslash \IZ \end{matrix} \right.$. [/mm] $

> nun muss gelten: $ [mm] \summe_{x \in \R}^{} [/mm] g(x) = 1 $.

Zwei Sachen vorweg: Die hast jetzt schon einige Postings gemacht und dir sollte aufgefallen sein (dafür gibts die Vorschaufunktion!), dass \R NICHT funktioniert!
Verwende also in Zukunft die (hier) korrekte Schreibweise \IR.

Dann: Was ist denn bitteschön eine Summe über eine überabzählbare Menge? Das kann man zwar definieren, ist von dir hier wohl eher NICHT gemeint!

Sauber aufgeschrieben meintest du bestimmt folgendes:

[mm] $\integral_{x\in\IR}\,g(x)\,d\lambda [/mm] = [mm] \summe_{x\in\IZ} [/mm] g(x) = 1$

Also letztlich steht da:

[mm] $\summe_{k=-\infty}^\infty [/mm] g(k)$

Schaust du dir nun g(k) mal genauer an, fällt dir auf, dass es für k und -k dasselbe liefert, d.h. du kannst es umschreiben (warum?) in:

[mm] $\summe_{k=-\infty}^\infty [/mm] g(k) = [mm] 2*\summe_{k=0}^\infty [/mm] g(k) - g(0)$  

Mach dir das mal klar!

Naja, und nun musst du  nur noch [mm] $\summe_{k=0}^\infty [/mm] g(k)$ bestimmen, das ist aber eine bekannte Reihe, die du kennen solltest.


Nun zu c)

zu c)

> Damit $ [mm] \mathbb{E}[X] [/mm] $ existiert, muss $ [mm] \integral_{-\infty}^{\infty} [/mm] |x| [mm] \cdot [/mm] f(x) dx < + [mm] \infty [/mm] $ sein.

[ok]

> Wenn ich das nachrechne, erhalte ich:

> $ [mm] \integral_{-\infty}^{\infty} [/mm] x [mm] \cdot [/mm] f(x) dx = [mm] \integral_{-\infty}^{\infty} [/mm] x [mm] \cdot [/mm] c [mm] \cdot \alpha^{|x|} [/mm] dx = [mm] 2c\integral_{0}^{\infty} [/mm] x [mm] \cdot \alpha^x [/mm] dx = 2 [mm] \cdot [/mm] c [mm] \cdot \bruch{\alpha^x (x \log(\alpha) - 1)}{\log^2(a)} [/mm] $.

Du hast im Integral nur x anstatt |x| geschrieben, dadurch werden deine Umformungen (insbesondere das 2. Gleichheitszeichen) falsch.
Pass das an (und mach dir klar, was du falsch gemacht hast), dann stimmts.
Insbesondere hast du c doch aber bereits schon bestimmt, nutze das doch und setze ein!

MFG,
Gono.


Bezug
                                        
Bezug
Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 04.02.2011
Autor: wolle238

Okay, die Tippfehler kommen daher, dass ich bei mir bei Latex eine andere Notation habe und deswegen ein paar Sachen übersehen habe... Ich hab das oben auch abgeändert (hoffe, ich hab alle Fehler gefunden)... Aber danke für den Hinweis...


Jetzt passt das mit der Summe auch.

also [mm] \summe_{x \in \IR} c \cdot \bruch{\lambda^{|x|}}{|x|!} 1_{\IZ}(x) = \summe_{x \in \IR \backslash \IZ} c \cdot \bruch{\lambda^{|x|}}{|x|!}1_{\IZ}(x) + \summe_{x \in \IZ} c \cdot \bruch{\lambda^{|x|}}{|x|!}1_{\IZ}(x) = 0 + \summe_{x = - \infty}^{\infty} c \cdot \bruch{\lambda^{|x|}}{|x|!} = 2 c \cdot \left( \summe_{x = 0}^{\infty} \bruch{\lambda^{x}}{x!} - g(0) \right) = 2 c \cdot \left( e^{\lambda} - 1 \right) [/mm] (nach Wolfram Alpha)

und dann muss ja:
[mm]1 = 2 c \cdot \left( e^{\lambda} - 1 \right) \Leftrightarrow \bruch{1}{2 (e^{\lambda} - 1)} = c [/mm]

Wenn ich jetzt da überprüfe ob [mm] $\integral_{-\infty}^{\infty} [/mm] |x| g(x) dx < + [mm] \infty$ [/mm] gilt, erhalte ich:

[mm] \integral_{-\infty}^{\infty} |x| \cdot g(x) dx = \integral_{-\infty}^{\infty} |x| \cdot \bruch{\lambda^{|x|}}{|x|!} \cdot \bruch{1}{2e^{\lambda} - 2} \cdot 1_{\IZ} (x) dx = \bruch{1}{2(e^{\lambda} - 1)} \cdot 2 \cdot \integral_{0}^{\infty} x \cdot \bruch{\lambda^x}{x!} \cdot 1_{\IZ} (x) dx = \bruch{1}{(e^{\lambda} - 1)} \cdot \integral_{0}^{\infty} \bruch{\lambda^x}{(x-1)!}\cdot 1_{\IZ} (x) dx[/mm]

Aber wie berechne ich das Integral?? Geht das überhaupt, oder hat $X$ mit der Dichte $g(x)$ keinen Erwartungswert. Das wäre jetzt mein Tipp... Aber ich weiß nicht, wie ich das Begründen soll...

Bezug
                                                
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Fr 04.02.2011
Autor: Gonozal_IX

Huhu,

vorweg: Stell deine Fragen doch nächstemal auch als Solche, sonst sieht man sie nicht.

> Jetzt passt das mit der Summe auch.

Nein.

>  
> also [mm]\summe_{x \in \IR} c \cdot \bruch{\lambda^{|x|}}{|x|!} 1_{\IZ}(x)[/mm]

Hier machst du wieder genau die gleiche unsaubere Notation.
Was ist denn eine Summe über eine überabzählbare Menge?
Das kann man sich zwar sauber definieren, hast du aber sicherlich noch nicht.

D.h. das Zeichen [mm] $\summe_{x\in\IR}$ [/mm] macht hier gar keinen Sinn.
Auch wenn nachher was korrektes rauskommt, ist die Notation so trotzdem nicht korrekt!
D.h. bis du bei [mm] \IZ [/mm] als Menge angekommen bist, müsstest du das Integralzeichen verwenden!

> $0 + [mm] \summe_{x = - \infty}^{\infty} [/mm] c [mm] \cdot \bruch{\lambda^{|x|}}{|x|!} [/mm] = 2 c [mm] \cdot \left( \summe_{x = 0}^{\infty} \bruch{\lambda^{x}}{x!} - g(0) \right)$ [/mm]

Hier hast du ausserdem einen Umformungsfehler gemacht.
Mach das mal Schrittweise, dann kommst du da von allein drauf.

Es gilt übrigens:

[mm] $\summe_{x = - \infty}^{\infty} [/mm] c [mm] \cdot \bruch{\lambda^{|x|}}{|x|!} [/mm] = [mm] 2\summe_{x=0}^\infty [/mm] g(x) - g(0)$ und
[mm] $\summe_{x = - \infty}^{\infty} [/mm] c [mm] \cdot \bruch{\lambda^{|x|}}{|x|!} \not= 2\left(\summe_{x=0}^\infty g(x) - g(0)\right)$ [/mm]

Der Rest ist folgend dann falsch.

> Wenn ich jetzt da überprüfe ob
> [mm]\integral_{-\infty}^{\infty} |x| g(x) dx < + \infty[/mm] gilt,
> erhalte ich:

Auch jetzt stimmen deine Umformungen nicht.

> [mm]\integral_{-\infty}^{\infty} |x| \cdot g(x) dx = \integral_{-\infty}^{\infty} |x| \cdot \bruch{\lambda^{|x|}}{|x|!} \cdot \bruch{1}{2e^{\lambda} - 2} \cdot 1_{\IZ} (x) dx = \bruch{1}{2(e^{\lambda} - 1)} \cdot 2 \cdot \integral_{0}^{\infty} x \cdot \bruch{\lambda^x}{x!} \cdot 1_{\IZ} (x) dx = \bruch{1}{(e^{\lambda} - 1)} \cdot \integral_{0}^{\infty} \bruch{\lambda^x}{(x-1)!}\cdot 1_{\IZ} (x) dx[/mm]

Du kannst doch gar nicht das uneigentliche Riemannintegral benutzen!
Du hast eine Zähldichte auf [mm] \IZ [/mm] !!
Wie ist da denn der Erwartungswert definiert?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de