www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichte
Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte: Bitte um Kontrolle
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 20.07.2005
Autor: BeniMuller

Nix rumgepostet.

Probe-Prüfung Stochastik Uni Zürich Aufgabe 3


Aufgabe:
Eine Zufallsgrösse nimmt nur Werte auf dem Intervall [0, 1] an.

Die Dichte ist dort:

[mm] f (x)= K5x^4 \ \ \ [/mm]

mit einer Normierungskonstanten K.


a. Berechnen Sie K.

b. Berechnen Sie den Erwartungswert dieser Zufallsgrösse.

c. Berechnen Sie die Varianz dieser Zufallsgrösse.

d. Berechnen Sie die Verteilfunktion dieser Zufallsgrösse.


Meine Lösungen:


a. Berechnung der Normierungskonstante  K

Die Dichte etwas präziser geschrieben :

[mm] f(x)=\begin{cases} K*5*x^4, & \mbox{wenn }0 \le \ x \ \le 1 \\ 0, & \mbox{sonst } \mbox{} \end{cases} [/mm]

Das Integral der Dichtefunktion muss 1 sein.

[mm] \integral_{- \infty}^{\infty} {K5x^4 \ dx} \ = \ \integral_{0}^{1} {K5x^4 \ dx} \ = \ K * \integral_{0}^{1} {5x^4 \ dx} \ = \ 1 [/mm]


Da bereits
[mm] \integral_{0}^{1} {5x^4 \ dx} \ = \ 1 [/mm]

ist in der Folge auch

[mm] \underline{K \ = \ 1} [/mm]


b. Berechnung des Erwartungswertes dieser Zufallsgrösse

[mm]\mu \ = \ E(x) \ = \ \integral_{- \infty}^{\infty} {x*f(x) dx} \ = \ \integral_{0}^{1} {x*K5x^4 \ dx} \ = \ \integral_{0}^{1} {5x^5 \ dx} \ = \ \bruch{5}{6} \ = \ \underline{0.8333...} [/mm]


c.  Berechnung der Varianz dieser Zufallsgrösse

[mm]\sigma^2 \ = \ V(x) \ = \ \integral_{- \infty}^{\infty} {(x \ - \ \mu)^2 \ * f(x) dx} \ = \ \integral_{0}^{1} {(x \ - \ \integral_{0}^{1}{5x^5 dx} )^2 \ * \ 5x^4 \ dx} \ = \ \bruch{5}{252} \ = \ \underline{0.01984}[/mm]


d.  Berechnung der Verteilungsfunktion dieser Zufallsgrösse

[mm] F(X) \ = \ P[X \ \le \ x] \ = \ \integral_{- \infty}^{x}{f(t) dt} \ = \ \integral_{- \infty}^{x}{K5t^4 dt} \ = \ \integral_{0}^{x}{5t^4 dt} \ = \ \underline{x^5} [/mm]

Eine nette Mathematikerin oder ein netter Mathematiker möge prüfen, ob sich da nicht ein Fehler eingeschlichen hat.

Dank und Grüsse aus Zürich




        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 20.07.2005
Autor: Stefan

Hallo Beni!

Es ist alles in Ordnung, du hast perekt gerechnet! [daumenhoch]

Hier nur eine kleine unbedeutende Anmerkung:

[mm] F(X) \ = \ P[X \ \le \ x] \ = \ \integral_{- \infty}^{x}{f(t) dt} \ = \ \int\limits_{{\red{- \infty}}}^x{K5t^4 dt} \ = \ \integral_{0}^{x}{5t^4 dt} \ = \ \underline{x^5}[/mm]

Statt [mm] $\red{-\infty}$ [/mm] müsste dort bereits [mm] $\green{0}$ [/mm] stehen.

> Eine nette Mathematikerin oder ein netter Mathematiker möge
> prüfen, ob sich da nicht ein Fehler eingeschlichen hat.

Immer diese Einschränkungen. ;-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Dichte: Besten Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 So 24.07.2005
Autor: BeniMuller

Hallo Stefan

Das Integral macht tatsächlich nur ab Null einen Sinn.
War kein Denk- sondern schlichte ein Tippfehler.

Dank und Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de