www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Dichte von Maßen
Dichte von Maßen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte von Maßen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 10.05.2011
Autor: aly19

Aufgabe
Es sien [mm] (\Omega, \mathcal{A}) [/mm] ein messbarer Raum und [mm] \mu, \nu [/mm] Maße auf diesem. Weisen sie jeweils [mm] \nu [/mm] << [mm] \mu [/mm] nach und geben sie eine Dichte f von [mm] \nu [/mm] bzgl [mm] \mu [/mm] an.
a) [mm] (\Omega, \mathcal{A})=(\IN, P(\IN)), [/mm] P und Q beliebige W-Maße und [mm] \mu=P+Q, \nu=P. [/mm]
b) [mm] (\Omega, \mathcal{A}) [/mm] beliebig, [mm] \lambda [/mm] ein [mm] \sigma-endliches [/mm] Maß auf [mm] \mathcal{A}, [/mm] P und Q W-Maße mit [mm] \lambda [/mm] Dichten g und h und [mm] \mu=P+Q, \nu [/mm] =P.

Hi, ich komm da nicht so wirklich voran.
Also erstmal zu a)
Das [mm] \nu <<\mu [/mm] gilt konnte ich zeigen. Jetzt suche ich aber ja eine Dichte. D.h. es muss ja gelten:
[mm] \nu(A)=P(A)=\int_A [/mm] f(x) [mm] d\mu=\int_A [/mm] f(x) d(P+Q).
Jezt komm ich da irgendwie nicht mit weiter. Kann ich die Maße hinten im Integral irgendwie auseinander ziehen? Oder macht man das gar nicht so? Vielleicht doch irgendiwe differenzieren?
Wäre super wenn mir jemand da nen Tipp geben kann, wie man vorgehen muss.
Viele Grüße :)

        
Bezug
Dichte von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Mi 11.05.2011
Autor: Fry

Hi!

zu a) Berechne die Dichte f, indem du für ein beliebiges [mm] \omega\in\IN [/mm]
[mm] P(\{\omega\}) [/mm] berechnest, also indem du in obiger Darstellung [mm] A=\{\omega\} [/mm] setzt.
Wenn du das Integral ausgerechnet hast, einfach nach [mm] f(\omega) [/mm] auflösen.

Danach dann zeigen, dass dies auch wirklich die Dichte ist, indem du für beliebige Mengen A es nachweist. Beachte dabei, dass, da [mm] \IN [/mm] abzählbar ist, sich jede Teilmenge A als disjunkte Vereinigung von Einpunktmengen [mm] \{\omega\} [/mm] schreiben lässt.

zu b) Wie lautet die [mm] $\lambda$-Dichte [/mm] von P+Q ?
Dann kannst du auf zwei verschiedene Arten P(A) (mittels [mm] $\lambda$-Dichten) [/mm] darstellen. Danach benutzten, dass generell Dichten fast sicher eindeutig bestimmt sind.

Gruß
Fry



Bezug
                
Bezug
Dichte von Maßen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:57 Mi 11.05.2011
Autor: aly19

hey, danke mal wieder für deine antwort :)

> zu a) Berechne die Dichte f, indem du für ein beliebiges
> [mm]\omega\in\IN[/mm]
> [mm]P(\{\omega\})[/mm] berechnest, also indem du in obiger
> Darstellung [mm]A=\{\omega\}[/mm] setzt.
>  Wenn du das Integral ausgerechnet hast, einfach nach
> [mm]f(\omega)[/mm] auflösen.

Also sei [mm] \omega \in \IN. [/mm]
Dann [mm] P(\{\omega\})=\int_{\{\omega\}} [/mm] f(x) [mm] d\mu=\int [/mm] f(x) [mm] 1_{\{\omega\}}d\mu =f(\omega)(P(\{\omega\})+Q(\{\omega\})) [/mm]
Hier bin ich mir nicht sicher ob der letzte Schritt beim Intergal ausführen so geht, aber man integriert ja eigentlich nur über einen Punkt also müsste das ja eigentlich Maß von dem Punkt mal Funktionswert sein oder?
Dann folgt:
[mm] f(\{\omega\})=\bruch{P(\{\omega\})}{P(\{\omega\})+Q(\{\omega\})} d\mu [/mm]

> Danach dann zeigen, dass dies auch wirklich die Dichte ist,
> indem du für beliebige Mengen A es nachweist. Beachte
> dabei, dass, da [mm]\IN[/mm] abzählbar ist, sich jede Teilmenge A
> als disjunkte Vereinigung von Einpunktmengen [mm]\{\omega\}[/mm]
> schreiben lässt.

Okay sei jetzt A [mm] \subset \IN [/mm] beliebig, dann [mm] A=\cup_{a \in A}\{a\}, [/mm] da A abzählbar.
[mm] \int_A \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})}=\int 1_A \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})} d(P+Q)=\int \sum_{a \in A} 1_{\{ a\}} \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})} [/mm] d(P+Q)= [mm] \sum_{a \in A} \int 1_{\{ a\}} \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})} [/mm] d(P+Q) [mm] =\sum_{a \in A} P(\{a\})=P(\cup_{a \in A} \{a\})=P(A). [/mm]
Stimmt das so? ich war mir das nicht so sicher mit dem auseinander ziehen?

> zu b) Wie lautet die [mm]\lambda[/mm]-Dichte von P+Q ?
>  Dann kannst du auf zwei verschiedene Arten P(A) (mittels
> [mm]\lambda[/mm]-Dichten) darstellen. Danach benutzten, dass
> generell Dichten fast sicher eindeutig bestimmt sind.

Zu b)
Also [mm] P(A)=\int_A [/mm] g(x) [mm] d\lambda [/mm] gilt einerseits.
Andererseits: [mm] \mu(A)=(P+Q)(A)=\int_A [/mm] (g+h) [mm] d\lambda [/mm] und somit:
[mm] P(A)=\int_A [/mm] f(x) [mm] d\mu=\int_A f(x)d(P+Q)=\int_A [/mm] f(x)(g+h)(x) [mm] d\lambda [/mm]
Wegen der Eindeutigkeit:
f(x)(g(x)+h(x))=g(x) [mm] \mu-f.ü. [/mm]
Also: [mm] f(x)=\bruch{g(x)}{g(x)+h(x)} [/mm]
Stimmt das so?
Für die Eindeutigkeit ist doch ncoh Voraussetzung, dass f oder g [mm] \lambda-integrierbar [/mm] sind oder? Also jedenfalls steht der Satz so in unserem Skript. Kann man das ncoh irgendwie zeigen?
Vielen Dank für deine Hilfe und viele Grüße :)

Bezug
                        
Bezug
Dichte von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mi 11.05.2011
Autor: Fry

Hey,

also soweit ich das beurteilen kann, schauts sehr gut aus :)

Bei der Dichte müsstest du vielleicht noch Indikatoren hinzufügen,
da die Gleichungen ja nur Sinn machen, wenn P({w})>0 bzw g>0.

[mm] f(x)=\bruch{P(\{x\})}{P(\{x\})+Q(\{x\})}*1_{\{P(\{x\})>0\}} [/mm]

Zu deiner letzten Frage...bin da gerade überfragt. Vielleicht weiß jemand anders das..?

Viele Grüße!
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de