www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Dichte von Quotient von ZV
Dichte von Quotient von ZV < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte von Quotient von ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 So 17.06.2007
Autor: Natalie2210

Aufgabe
Seien X1 und X2 normalverteilt mit Mittelwert 0 und varianzen [mm] s1^2 [/mm] und [mm] s2^2. [/mm] Berechne die dichte des Quotienten X1/X2.

Hallo!
Ich weiß leider gar nicht, wie ich hier anfangen soll. ich kenne zwar ein Theorem, welches mir die dichte für den Quotient X1/X2 angeben würde, nämlich

[mm] \integral_{-\infty}^{\infty}{f1(zt) f2(t) |t|dt} [/mm]

aber da in der Aufgabe nicht steht, dass die Zufallsvariablen unabhängig sind, kann ich das doch nicht anwenden, oder? (f1 ist dichte von X1, f2 Dichte von X2)

Danke für jeden Tipp,
lg,
Natalie

        
Bezug
Dichte von Quotient von ZV: Vermutung
Status: (Antwort) fertig Status 
Datum: 20:33 So 17.06.2007
Autor: luis52

Moin Natalie,

ich vermute, dass man diese Information unterschlagen hat. Eine Verallgemeinerung des von dir genannten Theorems besagt:

Gegeben seien die beiden Zufallsvariablen $X$ und $Y$ mit gemeinsamer Dichte $g(x,y)$. Dann  ist die Dichte von $U=X/Y$ gegeben durch [mm] $f_u(u)=\int_{-\infty}^{+\infty}|y|g(uy,y)\,dy$. [/mm]

Wird, wie in deiner Aufgabenstellung, nichts ueber die gemeinsame Verteilung von $(X,Y)$ angenommen, so halte ich die Aufgabe fuer nicht loesbar.

Uebrigens:  Unterstellst du Unabhaengigkeit, so ist
[mm] $(\sigma_2X_1)/(\sigma_1X_2)$ [/mm] (Standard-)Cauchy-verteilt.  Deren Dichte ist [mm] $f_v(v)=1/[\pi(1+v^2)]$ [/mm] fuer [mm] $v\in\IR$. [/mm]

lg
Luis                      

Bezug
                
Bezug
Dichte von Quotient von ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 So 17.06.2007
Autor: Natalie2210

Hallo Luis,
nein, es wird nichts von gemeinsamer Verteilung gesagt. ich habe die ZV jetzt als unabhängig angenommen, und komme auf dein genanntes ergebnis.
herzlichen Dank für deine Hilfe!

lg,
Natalie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de