www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichtefunktion
Dichtefunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtefunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 So 17.01.2010
Autor: jaruleking

Aufgabe
Geben seinen [mm] \lambda [/mm] > 0 und die Funktion

[mm] f(x)=\begin{cases} \lambda^2 x*e^{-\lambda *x}, & \mbox{für } x>0 \\ 0, & \mbox{für } x \le 0 \end{cases} [/mm]

a) Zeigen Sie, dass f eine Dichtefunktion ist.
b) Es sei X eine ZV mit Dichte f. Bestimmen Sie den Erwartungswert von X.

Lösung:

[mm] \integral_{0}^{\infty}{\lambda^2 x*e^{-\lambda *x}dx} [/mm]
[mm] =\lambda \integral_{0}^{\infty}{\lambda x*e^{-\lambda *x}dx} [/mm]
= [mm] \lambda[-x*e^{-\lambda *x}] [/mm] (in den Grenzen von [mm] \infty [/mm] und 0) + [mm] \integral_{0}^{\infty}{\lambda e^{-\lambda *x}dx} [/mm]
= 0 +1
= 1

b)

[mm] E(X)=\integral_{0}^{\infty}{x*\lambda^2 x*e^{-\lambda *x}dx} [/mm]
= [mm] \lambda \integral_{0}^{\infty}{x^2*e^{-\lambda *x}dx} [/mm]
= [mm] \lambda[-x^2 *e^{-\lambda *x}] [/mm] (in den Grenzen von [mm] \infty [/mm] und 0) + [mm] \lambda*\integral_{0}^{\infty}{2x*e^{-\lambda *x}dx} [/mm]
= 0 + [mm] \bruch{2}{\lambda} \integral_{0}^{\infty}{\lambda^2 xe^{-\lambda *x}dx} [/mm]
= [mm] \bruch{2}{\lambda} [/mm]


Hi,

ich habe bei diesen beiden Lösungen eigentlich ähnliche Fragen.

1) Bei a), der Anfang ist noch klar, nur ich verstehe nicht, wie die dritte Zeile zustande kommt, wenn ich das integral von [mm] =\lambda \integral_{0}^{\infty}{\lambda x*e^{-\lambda *x}dx} [/mm] bestimmen will, dann integriere ich das ganze und setzte die Grenzen ein, also wie in diesem Teil [mm] \lambda[-x*e^{-\lambda *x}] [/mm] (in den Grenzen von [mm] \infty [/mm] und 0). Was ich jetzt nicht verstehe, wieso die hier nochmal einen term dazu addieren, und zwar den hier + [mm] \lambda*\integral_{0}^{\infty}{2x*e^{-\lambda *x}dx}??? [/mm]


2) bei b) dann sehr ählich:

Man will das Integral = [mm] \lambda \integral_{0}^{\infty}{x^2*e^{-\lambda *x}dx} [/mm] bestimmen. man kommt also auf = [mm] \lambda[-x^2 *e^{-\lambda *x}] [/mm] (in den Grenzen von [mm] \infty [/mm] und 0) . Nur wie kommt der Rest da schon wieder zustande, also + [mm] \lambda*\integral_{0}^{\infty}{2x*e^{-\lambda *x}dx}?? [/mm]

Es sieht ja in beiden Aufgaben ganz danach aus, dass in a) die Ableitung von x genommen wird und in b) die Ableitung von [mm] x^2. [/mm] Nur ich habe dazu irgendwie keinen Satz bzw. ne Regel gefunden.


Danke für Hilfe.

        
Bezug
Dichtefunktion: Partielle Integration
Status: (Antwort) fertig Status 
Datum: 15:06 So 17.01.2010
Autor: Infinit

Hallo jaruleking,
im Integranden taucht doch zweimal ein x auf, einmal als Potenz und einmal im Exponenten. Die partielle Integration hilft nun dabei, diese Integrale zu lösen. Die Idee dabei ist, dass das x, das in einer Potenz vorkommt abgebaut wird, sprich differenziert, und somit zu einem einfacheren Integral führt, wohingegen die Integration der e-Funktion immer wieder eine e-Funktion liefert.
Damit ist allerding einiges an Rechnerei verbunden.
Viele Grüße,
Infinit

Bezug
        
Bezug
Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 So 17.01.2010
Autor: luis52

Moin,

kennst du die []Gammafunktion?

vg Luis

Bezug
                
Bezug
Dichtefunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 So 17.01.2010
Autor: jaruleking

Ah ok, danke euch. Jetzt habe ich es auch gesehen :-).

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de