www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Diff.-rechnung Quotientenregel
Diff.-rechnung Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff.-rechnung Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Do 07.09.2006
Autor: mary7

Aufgabe
y = [mm] 3(x^{-2} [/mm] - [mm] x^{-4} [/mm] )  /  [mm] x^{-1} [/mm] + [mm] x^{-2} [/mm]

Lösung: y' = 3 ( [mm] -x^{-2} [/mm] + 2 [mm] x^{-3} [/mm] ) = -3 [mm] x^{-2} [/mm] + 6 [mm] x^{-3} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo,

ich habe bei oben genannter Aufgabe einige Schwierigkeiten. Ich habe sie nach der Quotientenregel aufgelöst, also so:

(u/v)' = ((u'v - uv') / v²).

Mit dem Ableiten habe ich keine Probleme, aber dann kommt der Bruch, den ich nicht so weit auflösen bzw. vereinfachen kann, bis er der Lösung entspricht.

Ich habe bis hierhin gerechnet:

y' = (-3 [mm] x^{-2} [/mm] + 9 [mm] x^{-4} [/mm] + 6 [mm] x^{-5} [/mm] ) / ( 1 + [mm] 2x^{-1}+ x^{-2} [/mm] )

(ich habe aus Zähler & Nenner [mm] x^{-2} [/mm] ausgeklammert und gekürzt)

Jetzt komme ich nicht mehr weiter. Ich kann nichts mehr ausklammern und kürzen; ich stecke fest.
Ich habe meine Rechnung schon mehrfach kontrolliert, ob es Rechenfehler gibt, aber nichts gefunden.

Findet vielleicht jemand von euch meinen Fehler oder hat eine Idee, wie ich weiterkomme?
Falls mein letzter Stand der Rechnung für euch keinen Sinn macht, kann ich euch auch die ganze Rechnung schreiben, vielleicht steckt ja da der Fehler drin.

Ich danke euch allen schon mal im Voraus!! Wäre ganz toll von euch, wenn mir jemand weiterhelfen könnte!



Viele Grüße,
Marie

        
Bezug
Diff.-rechnung Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Do 07.09.2006
Autor: Zwerglein

Hi, mary,

Also das ist Deine Funktion?
(Wenn nicht, ist mein Lösungsvorschlag logischerweise hinfällig!)

f(x) = [mm] \bruch{3*(x^{-2}-x^{-4})}{x^{-1}+x^{-2}} [/mm]

Sei mir nicht böse, aber:
Kein Mensch lässt diesen Term so stehen und leitet blind ab!
Da erweitern wir erst mal (Zähler und Nenner) mit [mm] x^{4}: [/mm]

f(x) =  [mm] \bruch{3*(x^{2}-1)}{x^{3}+x^{2}} [/mm]

Und nun:
f'(x) = [mm] 3*\bruch{2x*(x^{3}+x^{2}) - (x^{2}-1)*(3x^{2}+2x)}{(x^{3}+x^{2})^{2}} [/mm]

= [mm] 3*\bruch{x*[2*(x^{3}+x^{2}) - (x^{2}-1)*(3x+2)]}{x^{4}*(x+1)^{2}} [/mm]

= [mm] 3*\bruch{2x^{3}+2x^{2} - 3x^{3} - 2x^{2}+3x+2}{x^{3}*(x+1)^{2}} [/mm]

= [mm] 3*\bruch{-x^{3}+3x+2}{x^{3}*(x+1)^{2}} [/mm]


mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de