www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Diff. Gleichung
Diff. Gleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff. Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Do 29.03.2012
Autor: Hans80

Aufgabe
Find die allg. Lösung der Diff.-Gleichung durch Separation:

2y'=3y+4

Guten Abend,

Ich hätte eine kurze Frage zur Vorhensweise.


Zunächst wandle ich doch meine Diff-Gleichung in die Form um, dass ich auf der rechten Seite ein Produkt aus zwei Termen habe, von denen einer kein x und der andere kein y enthält:

[mm] y'=\frac{1}{2}\cdot(3y+4) [/mm]

Die Diff-Gleichung ist also separabel (geht ja schon aus der Aufgabenstellung hervor).
Nun bringe ich alle y Terme auf die linke Seite und alles andere auf die Rechte.
Mein Problem ist nun, dass es ja verschiedene Möglichkeiten gibt das zu tun.

Man könnte das zum einen so machen:

[mm] \frac{1}{y+\frac{4}{3}}dy=\frac{3}{2}dx [/mm]

oder so:

[mm] \frac{1}{3y+4}dy=\frac{1}{2}dx [/mm]

Gibt es irgendeine Regel, die besagt, wie die Koeffizienten vor dem y auszusehen haben? Also muss da immer eine 1 stehen oder ist es egal?

Für beide Varianten kommen nämlich unterschiedliche Ergebnisse heraus und ich frage mich was nun richtig ist?

Hoffe mir kann da jemand weiterhelfen

Gruß Hans





        
Bezug
Diff. Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Do 29.03.2012
Autor: Martinius

Hallo Hans80,


> Find die allg. Lösung der Diff.-Gleichung durch
> Separation:
>  
> 2y'=3y+4
>  Guten Abend,
>  
> Ich hätte eine kurze Frage zur Vorhensweise.
>  
>
> Zunächst wandle ich doch meine Diff-Gleichung in die Form
> um, dass ich auf der rechten Seite ein Produkt aus zwei
> Termen habe, von denen einer kein x und der andere kein y
> enthält:
>  
> [mm]y'=\frac{1}{2}\cdot(3y+4)[/mm]
>  
> Die Diff-Gleichung ist also separabel (geht ja schon aus
> der Aufgabenstellung hervor).
>  Nun bringe ich alle y Terme auf die linke Seite und alles
> andere auf die Rechte.
>  Mein Problem ist nun, dass es ja verschiedene
> Möglichkeiten gibt das zu tun.
>
> Man könnte das zum einen so machen:
>  
> [mm]\frac{1}{y+\frac{4}{3}}dy=\frac{3}{2}dx[/mm]



[mm]\int \frac{1}{y+\frac{4}{3}} \; dy \; = \; \frac{3}{2} \; \int dx[/mm]

$ln [mm] \left|y+\frac{4}{3} \right| \; [/mm] = [mm] \; \frac{3}{2}*x+ln|C_1|$ [/mm]

[mm] $y+\frac{4}{3} \; [/mm] = [mm] \; C*e^{1,5*x}$ [/mm]

[mm] $y\; [/mm] = [mm] \;C*e^{1,5*x}-\frac{4}{3} [/mm] $



> oder so:
>  
> [mm]\frac{1}{3y+4}dy=\frac{1}{2}dx[/mm]


[mm]\int \frac{1}{3y+4} \; dy \; = \; \frac{1}{2} \int dx[/mm]

[mm] $\frac{1}{3}*ln|3y+4| \; [/mm] = [mm] \; \frac{1}{2}*x+ln|C_5|$ [/mm]

$ln|3y+4| [mm] \; [/mm] = [mm] \; \frac{3}{2}*x+ln|C_4|$ [/mm]

$3y+4 [mm] \; [/mm] = [mm] \;C_3*e^{1,5*x} [/mm] $

$y [mm] \; [/mm] = [mm] \;\frac{C_3}{3}*e^{1,5*x}-\frac{4}{3} [/mm] $

$y [mm] \; [/mm] = [mm] \;C*e^{1,5*x}-\frac{4}{3} [/mm] $










>  
> Gibt es irgendeine Regel, die besagt, wie die Koeffizienten
> vor dem y auszusehen haben? Also muss da immer eine 1
> stehen oder ist es egal?
>  
> Für beide Varianten kommen nämlich unterschiedliche
> Ergebnisse heraus und ich frage mich was nun richtig ist?
>  
> Hoffe mir kann da jemand weiterhelfen
>  
> Gruß Hans


LG, Martinius  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de