www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Diffbarkeit zeigen
Diffbarkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Fr 25.04.2014
Autor: U_Brehm

Aufgabe
Zeigen Sie, dass folgende Funktion diffbar ist:

[mm] f(u,v)=ln(u^2+v^2). [/mm]

Wie geht man da vor? Rechnet man zunächst die Ableitungen aus und zeigt dann, dass f stetig ist?

        
Bezug
Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 25.04.2014
Autor: schachuzipus


> Zeigen Sie, dass folgende Funktion diffbar ist:

>

> [mm]f(u,v)=ln(u^2+v^2).[/mm]
> Wie geht man da vor? Rechnet man zunächst die Ableitungen
> aus und zeigt dann, dass f stetig ist?

Wie ist $f$ denn in $(u,v)=(0,0)$ definiert?

Außerhalb von $(0,0)$ ist die Deffbarkeit doch klar ...

Die partiellen Ableitungen sind stetig außerhalb von $(0,0)$

Einzig spannend ist es in $(0,0)$ ...

Da musst du schauen, wie f dort definiert ist und die Definition der Diffbarkeit heranziehen ...

Gruß
schachuzipus

Bezug
                
Bezug
Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Fr 25.04.2014
Autor: U_Brehm

Würde ich die Frage stellen, wenn es mir so klar wäre? Nein. Daher bringen mir antworten sehr viel, wie: "Ist doch klar" und "Nutze die Definition". Da kann ich auch meinen Prof fragen, der gibt mir dieselbe Antwort.

Trotzdem Danke.

Bezug
                        
Bezug
Diffbarkeit zeigen: Deine Mitarbeit
Status: (Antwort) fertig Status 
Datum: 17:22 Fr 25.04.2014
Autor: Loddar

Hallo U_Brehm!


Der Wert $f(0,0)_$ sollte/muss in der Aufgabenstellung vorgegeben sein. Da scheint oben die Aufgabenstellung nur unvollständig zu sein.

Und wenn Du hier nach Definitionen bzw. deren Anwendung gefragt wirst, solltest Du diese mal hier formulieren und versuchen, diese anzuwenden.


Gruß
Loddar

Bezug
                                
Bezug
Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Fr 25.04.2014
Autor: U_Brehm

f: [mm] \IR [/mm] ohne {0} [mm] \rightarrow \IR. [/mm]

Daher brauche ich f(0,0) nicht betrachten. Der Rest ist mir jedoch nicht "sofort klar", sonst bräuchte ich ja auch keine Hilfe.


Ich kann ja einfach ausrechnen:
[mm] f(u,v)=ln(u^2+v^2)=:f_1(f_2(x)) [/mm] mit [mm] f_1(x)=ln(x) [/mm] und [mm] f_2(x)=x_1^2+x_2^2. [/mm]
[mm] f_1'(x)\overbrace{=}^{Bsp. Vorlesung}\bruch{1}{x}. [/mm]

[mm] f_2'(x)=\vektor{\bruch{\delta f_2}{x_1} \\ \bruch{\delta f_2}{x_2}}=\vektor{2x_1 \\ 2x_2}. [/mm]

[mm] \Rightarrow f'(x)=\bruch{1}{x_1^2+x_2^2}\vektor{2x_1 \\ 2x_2}. [/mm]

Aber jetzt habe ich es nicht gezeigt, sondern ausgerechnet.

Bezug
                                        
Bezug
Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Fr 25.04.2014
Autor: leduart

Hallo
schon der Anfang sieht falsch aus, f bildet doch nicht von [mm] \IR-= [/mm]  nach [mm] \IR [/mm] ab, sondern von [mm] \IR^2 [/mm] /(0.0) nach ˜Ir
wenn du die Differenzierbarkeit zeigen willst musst du entweder die Differenzierbakeit von f(x)=ln(x) als bekannt vorraussetzen oder die zuerst zeigen, dann brauchst du eine Def von ln(x)
Also sag uns, was bekannt ist, mit der Differenzierbarkeit von ln(x) ist die Aufgabe trivial
warum wechselst du die Bezeichnungen von u,v zu [mm] x_1,x_2 [/mm]
stammen Bezeichnungen wie [mm] f_2(x)=x_1^2+x_2^2 [/mm] wirklich aus der Vorlesung?
Gruß leduart

Bezug
                                                
Bezug
Diffbarkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 25.04.2014
Autor: U_Brehm

bekannt ist: (ln x)'=1/x.



Bezug
                                                        
Bezug
Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Sa 26.04.2014
Autor: U_Brehm

Bekannt ist nur (ln x)'=1/x

Bezug
                                                                
Bezug
Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Sa 26.04.2014
Autor: leduart

Hallo,
da das bekannt ist  und die Kettenregel, kannst du einfach die partiellen ableitungen bestimmen. wenn die stetig sind ist f differenzierbar
Gruß leduart

Bezug
                                                                        
Bezug
Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 So 27.04.2014
Autor: U_Brehm

Ja, das habe ich auch erst gemacht. Nur die nächste Aufgabe ist dann: Bestimmen Sie die partiellen Ableitungen. Daher verstehe ich es nicht.

Bezug
                                                                                
Bezug
Diffbarkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 So 27.04.2014
Autor: U_Brehm

will mir keiner mehr helfen???

Bezug
                                                                                
Bezug
Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:20 Mo 28.04.2014
Autor: fred97

Es sei D:= [mm] \IR^2 \setminus \{(0,0)\} [/mm]  und

$ [mm] f(u,v)=ln(u^2+v^2) [/mm] $  für (u,v) [mm] \in [/mm] D.

Berechne [mm] f_u [/mm] und [mm] f_v [/mm] und zeige, dass diese Funktionen auf D stetig sind.

Damit hast Du die Differenzierbarkeit von f auf D.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de