www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Diffeomorphismus
Diffeomorphismus < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismus: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:34 Sa 03.10.2009
Autor: Takeela

Guten Tag,

ich habe folgende Frage zu Diffeomorphismen:

Angenommen ich habe eine Funktion [mm]f[/mm] und ich soll den maximalen Definitionsbereich [mm]D[/mm] ermitteln, sodass[mm] f(D)[/mm] ein Diffeomorphismus ist.  Reicht es, die Determinante der Jacobi-Matrix auszurechnen und anhand dieser [mm]D[/mm] zu bestimmen (genau so, dass [mm]det D \not = 0[/mm]) und nachzuweisen, dass [mm]f[/mm] und [mm]f^{-1}[/mm] [mm]C^{1}[/mm]-Abbildungen sind?  Oder muss ich einen Umweg gehen und es über den expliziten Beweis der Bijektivität vornehmen?

Ich frage, weil ich eine Übungsaufgabe noch einmal durchgehen wollte und wir dort [mm]D[/mm] recht umständlich über die Surjektivität und Injektivität von [mm]f[/mm] ermittelt haben.

Herzlichen Dank!

        
Bezug
Diffeomorphismus: weitere Unklarheiten
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 03.10.2009
Autor: Takeela

Es fällt mir ein, dass ich bezüglich einiger Begrifflichkeiten noch unsicher bin (ich hatte noch keine Lineare Algebra...)

Der lokale Umkehrsatz besagt, dass eine [mm]C^{1}[/mm]-Abbildung [mm]f[/mm] genau dann ein lokaler Diffeomorphismus in einem Punkt [mm]p[/mm] ist, wenn [mm]df_{p}[/mm] ein Isomorphismus ist.  

Der Begriff Isomorphismus verursacht einige Verständnisschwierigkeiten.  Zur Überprüfung, ob ich richtig liege, tippe ich hier mal meine "Impressionen":

[mm]df_{p}[/mm] ist Isomorphismus

[mm] \gdw[/mm]  [mm]df_{p}[/mm] bijektiv ist
[mm] \gdw[/mm]  [mm]df_{p}[/mm] hat vollen Rang
[mm] \gdw [/mm] det[mm]df_{p} \not= 0[/mm]
[mm] \gdw [/mm] ker[mm]df_{p} = 0[/mm] nur der Nullvektor ist

Verstehe ich das alles richtig?  

Bezug
                
Bezug
Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 03.10.2009
Autor: pelzig


> Der Begriff Isomorphismus verursacht einige
> Verständnisschwierigkeiten.  Zur Überprüfung, ob ich
> richtig liege, tippe ich hier mal meine "Impressionen":
>  
> [mm]df_{p}[/mm] ist Isomorphismus
>
> [mm]\gdw[/mm]  [mm]df_{p}[/mm] bijektiv ist
>  [mm]\gdw[/mm]  [mm]df_{p}[/mm] hat vollen Rang
>  [mm]\gdw[/mm] det[mm]df_{p} \not= 0[/mm]
>  [mm]\gdw[/mm] ker[mm]df_{p} = 0[/mm] nur der
> Nullvektor ist

Korrekt. Vergiss nicht, dass [mm] $df_p$ [/mm] zusätzlich eine lineare Abbildung ist (das ist keine Forderung, sondern steht schon in der Definition der Ableitung), nur so machen die Begriffe Rang und Determinante überhaupt Sinn. War dir sicher klar.

Gruß, Robert

Bezug
        
Bezug
Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Sa 03.10.2009
Autor: pelzig

Du musst auf jeden Fall Injektivität und Surjektivität prüfen. Der Satz über die Umkehrabbildung garantiert lediglich lokale Bijektivität, und das reicht nicht. Zum Beispiel ist [mm] $\arctan:\IR\to\IR$ [/mm] überall lokal umkehrbar, aber nicht surjektiv. Ein lehrreicheres Beispiel wäre natürlich, wenn es global nicht injektiv ist, vielleicht findest du auch da was :-)

Gruß, Robert

Bezug
                
Bezug
Diffeomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Sa 03.10.2009
Autor: Takeela

Herzlichen Dank!

Jetzt ist mir das wieder sehr klar verständlich! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de