Differentailgleichungssystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Lösen Sie folgendes lineare Differentailgleichungssystem: [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] * y + [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm] = y' |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo erstmals. Also ich habe da einige schwierigkeinten mit dieser Aufgabe. Ich habe rausgefunden, dass ich zuerst die homogene Gleichung lösen soll. Mit der Eigenwertbestimmung sollte das je einfach gehen, leider hat diese Matrix meiner Meinung nach nur 1 Eigenwert, nämlich 1.
Ich kann nun die Matrix A := [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] in JNF (A tilde) bringen um [mm] e^{ A } [/mm] zu berechenen. Das wäre dann [mm] P^{-1} e^{ A tilde }P [/mm]
Meine Basis des Lösungsraums des DGLsystems wären dann die Spaltenverktoren der Matrix [mm] e^{A}
[/mm]
Stimmt das soweit?
Eine Frage die ich noch nicht beantworten konnte ist, wie sieht [mm] e^{A tilde} [/mm] aus. Also [mm] e^{\pmat{ 1& 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1}}.
[/mm]
Jetzt kommt mein noch grösses Problem. Wie kann ich den Vektor [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm] in die Lösung "einbauen"?
Ich hoffe jemand kann mir weiterhelfen und danke schon im voraus.
mfg henniez-swisswater
|
|
|
|
Hallo,
Leider hast du dich bei der Berechnung der JNF verrechnet, es gilt [mm] $\tilde A=\pmat{1&0&0\\0&1&1\\0&0&1}$. [/mm] Hiermit ist die Berechnung von [mm] $e^{\tilde At}$ [/mm] sehr viel leichter, da [mm] $\tilde A^n=\pmat{1&0&0\\0&1&n\\0&0&1}$.
[/mm]
Nun zur speziellen Lösung. Wenn du einen Vektor $x$ finden kannst, so dass [mm] $Ax=\vektor{-22\\7\\-12}$, [/mm] dann wäre $x$ eine spezielle Lösung.
Kommst du jetzt auf die Lösung?
Gruß, banachella
|
|
|
|
|
Aufgabe | Lösen Sie folgendes lineare Differentailgleichungssystem: $ [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] $ * y + $ [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm] $ = y' |
ok, dank erstmals. ich habe jetzt mal eine lösung. Könnte mir jemand helfen und sagen, ob ich die aufgabe so richtig gelöst habe?
Meine Lösung sieht folgendermassen aus:
A = [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm]
A in JNF [mm] \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}
[/mm]
Eine Lösung der homogenen Gleichung [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11}*y [/mm] = y' ist [mm] e^{t*\pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}} [/mm]
um [mm] e^{t * \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}} [/mm] explizit zu berechnen spalte ich [mm] t*\pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm] in [mm] t*\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm] + [mm] t*\pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0} [/mm] auf
somit ist [mm] e^{t * \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}}=e^{t * \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}}*e^{t * \pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0}}=\pmat{ e^{t} & 0 & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}}*\pmat{ 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}=\pmat{ e^{t} & t*e^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}}
[/mm]
[mm] \Delta=\pmat{ e^{t} & t*e^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}} [/mm] sollte nun das Lösungsfundamentalsystem sein.
Da [mm] det(\Delta)\not=0 \exists \Delta^{-1}=\pmat{ e^{-t} & -t*e^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-t}} [/mm]
Um nun die inhomogene Gleichung zu lösen verwende ich Variation der Konstanten.
[mm] L=\Delta(*c(t) [/mm] und L löse die inhomogene Gleichung
[mm] L'=\Delta'*c(t)+\Delta*c'(t)
[/mm]
einsetzen in Anfangsgleichung (inhomogene Gl) y'=L' und y=L
[mm] \Rightarrow \Delta'*c(t)+\Delta*c'(t)=\pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] $ * [mm] \Delta*c(t) [/mm] + $ [mm] \pmat{ -22 \\ 7 \\ -12 }
[/mm]
[mm] \Rightarrow \Delta'=\pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] $ * [mm] \Delta [/mm] und [mm] \Delta*c'(t)=b [/mm]
[mm] \Rightarrow c(t)=\integral_{}^{}{\Delta^{-1}*\pmat{ -22 \\ 7 \\ -12 } dt}=\integral_{}^{}{\pmat{ e^{-t} & -t*e^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-t}}*\pmat{ -22 \\ 7 \\ -12 } dt}=\integral_{}^{}{\pmat{ -22*e^{-t}-7te^{-t} \\ 7e^{-t} \\ -12e^{-t} } dt}=\pmat{ (7t+29)e^{-t}\\ -7e^{-t} \\ 12e^{-t} }
[/mm]
[mm] \Rightarrow L=\pmat{ e^{t} & t*e^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}}*\pmat{ (7t+29)e^{-t}\\ -7e^{-t} \\ 12e^{-t} }=\pmat{ (7t+29)e^{2t}-7t \\ -7 \\ 12 }
[/mm]
[mm] \Rightarrow y=\pmat{ (7t+29)e^{2t}-7t \\ -7 \\ 12 }+c1*\pmat{ e^{t} \\ 0 \\ 0 }+c2*\pmat{ te^{t}\\ e^{t} \\ 0 }+c3*\pmat{ 0 \\ 0 \\ e^{t} }
[/mm]
Wenn ich mir das so ansehe glaube ichnicht, dass viel an der Rechnung stimmt. Der Weg ist ähnlich zu einem 1 Dimensionalen Beispiel aus einem Analysis Script. Aber meine Rechnung scheint mir ein riesen Gebastel zu sein. Ich hoffe, dass trotzdem das eine oder andere stimmt.
mfg henniez und danke schon im voraus
ps: ich habe jetzt erst bemerkt, dass ich die Matrix der homogenen Gleichung nicht wieder zu der ursprünglichen Basis zurückgeführt habe. Folglich wäre das Lösungsfundamentalsystem anders. Trotzdem wäre ich froh, wenn mir jemand sagen könnte, ob dies das richtige Verfahren ist, um die Diffgleichung zu lösen. mfg nochmals:P
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Fr 01.09.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|