Differential auf der Sphäre < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechnen Sie das Differential von f : [mm] S^{n} \to S^{n}, [/mm] f(x) = −x. |
Hallo Leute,
habe diese Aufgabe im Internet gefunden, leider ohne Lösung.
Scheinbar wurde diese Aufgabe in einer mündlichen Prüfung gestellt, von dem her sollte sie nicht allzu lang sein.
Mein erster Einfall ist, dass man das Differential in lokalen Koordinaten berechnet. Ist p [mm] \in S^{n} [/mm] und sind (x,U) und (y,V) zwei sich überlappende Karten von p, so ist das Differential von f an der Stelle p gegeben durch D(y [mm] \circ [/mm] f [mm] \circ x^{-1})|_{x(p)}. [/mm] Eine Karte wäre nun gegeben durch die n-dimensionalen Kugelkoordinaten, aber das wär doch viel zu umständlich, oder was meint ihr?
Über Hilfe würde ich mich sehr freuen!
Viele Grüße
Anfänger
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:44 Mi 25.07.2012 | Autor: | SEcki |
> Mein erster Einfall ist, dass man das Differential in
> lokalen Koordinaten berechnet. Ist p [mm]\in S^{n}[/mm] und sind
> (x,U) und (y,V) zwei sich überlappende Karten von p, so
> ist das Differential von f an der Stelle p gegeben durch
> D(y [mm]\circ[/mm] f [mm]\circ x^{-1})|_{x(p)}.[/mm] Eine Karte wäre nun
> gegeben durch die n-dimensionalen Kugelkoordinaten, aber
> das wär doch viel zu umständlich, oder was meint ihr?
Man muss hier sehen, dass das f eigentlich die Einschränkung der Abbildung auf dem [m]\IR^{n+1}[/m] ist, der sich zu einer auf die Sphäre einschränkt. Jetzt muss man sich überlegen, was diese eingeschränkte Abbildung für das Differential auf der Untermanigfaltigkeit bedeutet - und man sollte sehen, dass es die Einschränkung des Differentials auf den Tangentialraum der Unter.mgf. ist.
SEcki
|
|
|
|