Differentialgleichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe eine Frage..
Bin bei dem Thema Differentialgleichungen und muss da Minima Maxima oder Sattelpunkte bestimmen und musste an einer Stelle die 3 Wurzel ziehen.
Bei [mm] \wurzel{2} [/mm] = 4 ist das ja so , dass das Ergebnis x= + - 2 lautet
und ich habe jetzt das Problem muss jetzt [mm] \wurzel{3} [/mm] = 1 rechnen und ich bin mir nicht sicher dass das Ergebnis + - 1 lautet. Hängt das vom Exponenten ab dass man +- schreibt bei geraden Exponenten +- bei ungeraden nicht? War mir halt unsicher..
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:41 Sa 13.06.2015 | Autor: | hippias |
Hier liegt ein Missverstaendniss vor: nach Definition ist die (Quadrat-) Wurzel einer reellen Zahl [mm] $x\geq [/mm] 0$, diejenige nicht negtive reelle Zahl $w$, die mit sich selbst multipliziert $x$ ergibt.
Die Wurzel ist also stets [mm] $\geq [/mm] 0$. Die Gleichung [mm] $w^{2}= [/mm] x$ besitzt aber bis zu zwei $2$ Loesungen, naemlich [mm] $\sqrt{x}$ [/mm] und [mm] $-\sqrt{x}$. [/mm] Es ist also nicht [mm] $\sqrt{4}=\pm [/mm] 2$, sondern die Loesungsmenge der Gleichung [mm] $w^{2}=4$ [/mm] besteht aus den Zahlen $2$ und $-2$; [mm] $\sqrt{4}$ [/mm] ist immer gleich $2$. Der Gebrauch der Wurzelfunktion bei Terumformungen zum Aufloesen von Gleichungen laesst oftmals die wuenschenswerte Genauigkeit missen.
Die reelle Gleichung [mm] $w^{3}=y$ [/mm] zeigt dieses Phaenomen nicht: sie hat stets nur eine einzige Loesung, welches die dritte Wurzel von $y$ ist. [mm] $w^{3}=8$ [/mm] wird nur von $2$ geloest, nicht aber von $-2$
|
|
|
|