www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 15.03.2006
Autor: Professor

Hi Leute,

bräuchte mal wieder die Hilfe von ein paar weisen Mathecracks ;-)

Bestimmen sie eine stetige Funktion f: [mm] \IR \mapsto \IR [/mm]

f(x) + [mm] \integral_{0}^{x}{f(t) dt} [/mm] = [mm] \bruch{2}{4} x^{2} [/mm]

für alle x [mm] \in \IR [/mm] erfüllt.

Mein Ansatz:

obige Gleichung lässt sich auch wie folgt schreiben.

f(x) + F(x) = [mm] \bruch{1}{2} x^{2} [/mm]

oder

f'(x) + f(x) = x

[mm] \Rightarrow [/mm] y' + y = x

gesucht ist nun y.

homogene Lösung: y' + y = 0

LFS: x [mm] \mapsto \alpha e^{-x} [/mm]

so weit ist die ganze Geschichte noch einleuchtend.

y(x) = a(x) * [mm] e^{-x} [/mm] Warum wird hier mit a(x) multipliziert? Falls a dem [mm] \alpha [/mm] entspricht, warum ist dies von x abhängig?

y'(x) = a'(x) * [mm] e^{-x} [/mm] - a(x) * [mm] e^{-x} [/mm]

y'(x) + y(x) = a'(x) * [mm] e^{-x} [/mm] = x

a'(x) = x * [mm] e^{x} [/mm]

a(x) = x * [mm] e^{x} [/mm] - [mm] e^{x} [/mm] + c

Ist das Vorzeichen von c eigentlich frei wählbar?

(c = Integrationskonstante)

allgemeine Lösung:

y(x) = x - 1 + c * [mm] e^{-x} [/mm]

Anfangsbedingung aus Integralbedingung: f(0) = 0

Wo ist die Anfangsbedingung f(0) = 0? In der Angabe steht nichts davon.

Schon mal danke für die Beantwortung meiner Fragen.

Gruß

Prof.


        
Bezug
Differentialgleichung: Erläuterungen
Status: (Antwort) fertig Status 
Datum: 22:03 Mi 15.03.2006
Autor: Loddar

Hallo Professor!


> y(x) = a(x) * [mm]e^{-x}[/mm] Warum wird hier mit a(x)
> multipliziert? Falls a dem [mm]\alpha[/mm] entspricht, warum ist
> dies von x abhängig?

Dies ist nun das Verfahren "Variation der Konstanten", um nun auch die partikuläre Lösung für das inhomogene System zu lösen.

  

> a(x) = x * [mm]e^{x}[/mm] - [mm]e^{x}[/mm] + c
>
> Ist das Vorzeichen von c eigentlich frei wählbar?

Ja, ist zwar nicht ganz gewöhnlich ... macht aber keinen Unterschied.


  

> Anfangsbedingung aus Integralbedingung: f(0) = 0
>  
> Wo ist die Anfangsbedingung f(0) = 0? In der Angabe steht
> nichts davon.

[notok] Es muss heißen:

[mm] $\red{F}(0) [/mm] \ = \ 0$   oder   $y(0) \ = \ 0$


Diese Anfangsbedingung folgt aus der Aufgabenstellung / Definition durch die Integralschreibweise.

Allgemein gilt: [mm] $\integral_a^a{f(x) \ dx} [/mm] \ = \ F(a)-F(a) \ = \ 0$


Also auch hier mit  $F(x) \ := \ [mm] \integral_0^x{f(t) \ dt}$ [/mm]

$F(0) \ = \ [mm] \integral_0^0{f(t) \ dt} [/mm] \ = \ 0$


Gruß
Loddar


Bezug
                
Bezug
Differentialgleichung: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:25 Do 16.03.2006
Autor: Professor

Hi Loddar,

da bleibt mir nur noch eins zu sagen:

Verdammt bist du gut!!! :-)

Gruß

Prof.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de