www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differentialgleichung
Differentialgleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: lösen der Dgl.
Status: (Frage) beantwortet Status 
Datum: 21:23 Do 02.12.2004
Autor: Anubis

Hallo,

gegeben ist die Dgl. [mm] y'(1-x^{2})-1-2y^{2}=0 [/mm] sowie [mm] y(1/3)=\wurzel{2}/2 [/mm]

wenn ich das ganze etwas umforme, dann kann ich die Störfunktion

[mm] s(x)=1/(1-x^{2}) [/mm] zum finden einer homogenen Lsg. zunächst weglassen,

und erhalte -1/y=ln(1+x/1-x)+C durch Trennen der Variablen und Integr.

bzw. y=ln(1+x/1-x)-1/C

Nun stehe ich vor dem Problem, dass ich nicht weiß, wie (und ob überhaupt) die Variation der Konstanten aussehen soll da dies üblicherweise den Typ [mm] y(homogen)=k*e^{\lamdba*x} [/mm] velangt.
Oder löst man das Ganze besser durch eine spezielle substitution??
Vieleicht lässt sich auch mit der gegebenen Bedingung [mm] Y(1/3)=\wurzel2/2 [/mm]
etwas anfangen??
wie dem auch sei, die gegebene Lsg lautet:

[mm] y=\wurzel2/2*tan[\wurzel2/2*ln(1+x/1-x)+0,295] [/mm]

aber wie kommt man dahin...???

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Fr 03.12.2004
Autor: baskolii

Hi!

Bist du sicher, das die angegebene Lsg richtig ist?
Setz mal den Anfangswert ein, da kommt nicht das richtige raus.
Ich hab die Aufgabe einmal durchgerechnet und meine Lsg ist:
[mm] y=\frac{\wurzel{2}}{2}tan(\wurzel{2}ln\left|\frac{1+x}{1-x}\right|-\wurzel{2}ln2+arctan1) [/mm]

Warum kannst du die Störfunktion weglassen? Ich dachte das geht nur bei linearen Dgl? Und warum machst du das? Du kannst doch gleich die Lösung durch Trennung der Variablen ausrechnen.

mfg Verena

Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:58 Fr 03.12.2004
Autor: Anubis

Danke für den Tip. Auf diesem Weg erhalte ich die von mir angegebene Lsg. ,du hast da noch 1/2 vor ln(x+1/x-1) vergessen, aber sonst das gleiche.
Wie hast du [mm] \integral_{dy/1+2y^{2}} [/mm] bestimmt,
ich kann das nur mit Tafel/ Programmen holen

mfg Anubis



Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:09 Fr 03.12.2004
Autor: baskolii

Was ist denn [mm] \integral_{dy/1+2y^{2}} [/mm] ?
Oder meinst du [mm] \integral{\frac{1}{1+2y^2}dy}? [/mm]

[mm] \integral{\frac{1}{1+2y^2}dy=\frac{1}{2}\integral\frac{1}{(\frac{1}{\wurzel{2}})^2+y^2}dy}=\frac{1}{2}\frac{1}{\frac{1}{\wurzel{2}}}arctan\left(\frac{x}{\frac{1}{\wurzel{2}}}\right)=\frac{\wurzel{2}}{2}arctan\left(\wurzel{2}x\right) [/mm]



mfg Verena

Bezug
                        
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:10 Fr 03.12.2004
Autor: Anubis

es soll natürlich heißen

[mm] \integral_{ }^{ } {dy/(1+2y^2)} [/mm]

Bezug
                                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:12 Fr 03.12.2004
Autor: baskolii

Aber die von dir angegebene Lösung erfüllt doch die Anfangsbedingung nicht! Irgendwas kann da nicht stimmen, oder hab ich mich da verrechnet?



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de