www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Variation der Konstanten
Status: (Frage) beantwortet Status 
Datum: 11:03 Mo 30.05.2005
Autor: KingChango

Hallo Zusammen! Ich sitze gearde bei einem Bsp:

y'' - y = -  [mm] \bruch{1}{1+e^{x}} [/mm]

zu lösen mit varation der konstanten

ich habe das gerechnete bsp vor mir liegen aber ich habe folgendes problem:

Homogene Lösung ist einfach : yh= c1 * [mm] e^{x} [/mm] + c2 * [mm] e^{-x} [/mm]

für die partikuläre hat er dann 2 gleichungen angeschrieben

1) c1'(x) * [mm] e^{x} [/mm] + c2'(x) * [mm] e^{-x} [/mm] = 0

2) c1'(x) * [mm] e^{x} [/mm] - c2'(x) * [mm] e^{-x} [/mm] = - [mm] \bruch{1}{1+e^{x}} [/mm]

doch wie kommt er auf diese 2 gleichungen???

Die zu lösen stellt dann kein Problem mehr.

Vielen Danke im Voraus und hoffe auf schnelle Hilfe!! MGF

        
Bezug
Differentialgleichung: DGL-System 1. Ordnung
Status: (Antwort) fertig Status 
Datum: 14:53 Mo 30.05.2005
Autor: MathePower

Hallo,

> y'' - y = -  [mm]\bruch{1}{1+e^{x}}[/mm]
>  
> zu lösen mit varation der konstanten
>  

Um die Methode der Variation der Konstanten anwenden zu können, muß die DGL auf eine DGL 1. Ordnung zurückgeführt werden.

> ich habe das gerechnete bsp vor mir liegen aber ich habe
> folgendes problem:
>  
> Homogene Lösung ist einfach : yh= c1 * [mm]e^{x}[/mm] + c2 * [mm]e^{-x}[/mm]
>  
> für die partikuläre hat er dann 2 gleichungen
> angeschrieben
>  
> 1) c1'(x) * [mm]e^{x}[/mm] + c2'(x) * [mm]e^{-x}[/mm] = 0
>  
> 2) c1'(x) * [mm]e^{x}[/mm] - c2'(x) * [mm]e^{-x}[/mm] = - [mm]\bruch{1}{1+e^{x}}[/mm]
>  
> doch wie kommt er auf diese 2 gleichungen???

er hat das oben angegebene Beispiel auf ein System 1. Ordnung zurückgeführt.

Setzt man

[mm]\begin{gathered} y_{1} \; = \;y \hfill \\ y_{2} \; = \;y' \hfill \\ \end{gathered} [/mm]

Dann wird die DGL 2. Ordnung in ein System 1. Ordnung überführt:

[mm]\begin{gathered} y_{1}^{'} \; = \;y_{2} \hfill \\ y_{2 }^{'} \; = \;y_{1} \; - \frac{1} {{1\; + \;e^{x} }} \hfill \\ \end{gathered}[/mm]

Oder in Matrix-Schreibweise:

[mm]\left( {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right)^{'} \; = \;\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\;\left( {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right)\; + \;\left( {\begin{array}{*{20}c} 0 \\ { - \frac{1} {{1\; + \;e^x }}} \\ \end{array} } \right)[/mm]

Nun wird zuerst das homogene System gelöst:

[mm]\left( {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right)^{'} \; = \;\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\;\left( {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right)[/mm]

Diese hat  als Lösung

[mm] \left( {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right)\; = \;\left( {\begin{array}{*{20}c} {c_{1} \;e^x \; + \;c_{2} \;e^{ - x} } \\ {c_{1} \;e^x \; - \;c_{2} \;e^{ - x} } \\ \end{array} } \right)[/mm]

Nun kann die Methode der Variation der Konstanten angewandt werden:

[mm] \left( {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right)\; = \;\left( {\begin{array}{*{20}c} {c_{1} \left( x \right)\;e^{x} \; + \;c_{2} \left( x \right)\;e^{ - x} } \\ {c_{1} \left( x \right)\;e^{x} \; - \;c_{2} \left( x \right)\;e^{ - x} } \\ \end{array} } \right)[/mm]

Nun wird der Ansatz in das System 1. Ordnung eingesetzt, dann erhält man die besagten Gleichungen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de