www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Di 15.03.2011
Autor: asulu211

Aufgabe
Geben sie die differentialgleichung folgender Kurvenscharen in expliziter Darstellung an und bestimmen sie die Definitionsmenge der Differentialgleichung. y=ln(Cx)

Hallo!
Kann mir jemand bitte bei dieser aufgabe helfen?! Weiß erlich gesagt nicht genau was ich da machen muss und bräuchte deshalb einen ansatz!
Wär euch sehr dankbar!
lg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 15.03.2011
Autor: MathePower

Hallo asulu211,

> Geben sie die differentialgleichung folgender Kurvenscharen
> in expliziter Darstellung an und bestimmen sie die
> Definitionsmenge der Differentialgleichung. y=ln(Cx)
>  Hallo!
>  Kann mir jemand bitte bei dieser aufgabe helfen?! Weiß
> erlich gesagt nicht genau was ich da machen muss und
> bräuchte deshalb einen ansatz!
>  Wär euch sehr dankbar!
>  lg
>  


Differenziere zunächst die gegebene Kurvenschar.

Die DGL der Kurvenschar erhältst Du,
wenn die Konstante C aus der Kurvenschar

[mm]y=\ln\left(C*x\right)[/mm]

eliminiert wird.


>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Di 15.03.2011
Autor: asulu211

Also ist das Ergebnis dann y'=1/x ?

Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Di 15.03.2011
Autor: MathePower

Hallo asulu211,

> Also ist das Ergebnis dann y'=1/x ?  


Ja. [ok]

Jetzt muss Du den Definitionsbereich dieser DGL angeben.


Gruss
MathePower

Bezug
                                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Di 15.03.2011
Autor: asulu211

Ok!
Wenn die Gleichung aber y=C lnx lauten würde, dann bekomm ich wenn ichs ableite y'= C/x; das C wird also nicht eliminiert! was mach ich in diesem fall?
lg

Bezug
                                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 15.03.2011
Autor: MathePower

Hallo asulu211,

> Ok!
>  Wenn die Gleichung aber y=C lnx lauten würde, dann bekomm
> ich wenn ichs ableite y'= C/x; das C wird also nicht
> eliminiert! was mach ich in diesem fall?


Nun, das C ist aus

[mm]y=C*\ln\left(x\right)[/mm]

zu eliminieren und in

[mm]y'= C/x[/mm]

einzusetzen.


> lg


Gruss
MathePower

Bezug
                                                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 15.03.2011
Autor: asulu211

Also wär in dem Fall dann y'=y/(x * ln(x)) ?
Wenns stimmt dann hab ichs jetzt endlich verstanden :)
lg

Bezug
                                                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 15.03.2011
Autor: MathePower

Hallo asulu211,

> Also wär in dem Fall dann y'=y/(x * ln(x)) ?


Ja, das stimmt. [ok]


>  Wenns stimmt dann hab ichs jetzt endlich verstanden :)
>  lg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de