www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Differentialgleichung
Differentialgleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:28 Di 09.08.2011
Autor: RWBK

Aufgabe 1
a) Gesucht ist die allgemeine Lösung der Differentialrechnung
[mm] 4y^{(4)}-24y´´´ [/mm]  +51y´´ -44y´ +12y=0

Stellen Sie hierzu das charakteristische Polynom [mm] p_{4}(\lambda) [/mm] auf. Es hat u.a. die doppelte Nullstelle [mm] \lambda= [/mm] 2. Spalten Sie diese mit dem Horner Schema ab.






Aufgabe 2
b) Geben Sie die allgemeine Lösung der Differentialgleichung y´ [mm] =\bruch{sin(x)}{cos(y)} [/mm]






Hallo,

Zur ersten Aufgabe (Teil a)

Was ist ein charakterischtisches Polynom?
Die Abspaltung mittels des Horner Schemas hab ich noch gemacht
Wenn es sich um eine doppelte Nullstelle handel wird das Horner Schema zweimal angewendet oder?
1x Horner Schema angewendet = [mm] 4\lambda^{3}-16\lambda^{2}+19\lambda-6 [/mm]
2x Horner Schema angewendet = [mm] 4\lambda^{2}-8\lambda+3 [/mm]

[mm] p_{4}(\lambda)=(x-2)^{2}*(4\lambda^{2}-8\lamda+3) [/mm] ist das meine Lösung? Wenn nicht wie muss ich weiter vorgehen und wie würde mein gesuchtes Ergebniss aussehen?

2 Aufgabe ( Teil b)

Da würde es mich freuen ob mir jemand sagen kann ob meine Rechnung(-weg) richtig ist.

y´ [mm] =\bruch{sin(x)}{cos(y)} \gdw \bruch{dy}{dx}=\bruch{sin(x)}{cos(y)} [/mm]

dy*cos(y)=sin(x)*dx
[mm] \integral_{}^{}{cos(y) dy}=\integral_{}^{}{sin(x) dx} [/mm]
[mm] sin(y)+c_{1}=-cos(x)+c_{2} [/mm]
[mm] sin(y)=-cos(x)+c_{2}-c_{1} [/mm]
sin(y)=-cos(x)+c
y(x)=arcsin(-cos(x)+c)

mfg

        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Di 09.08.2011
Autor: schachuzipus

Hallo RWBK,


> a) Gesucht ist die allgemeine Lösung der
> Differentialrechnung
>  [mm]4y^{(4)}-24y´´´[/mm]  +51y´´ -44y´ +12y=0
>  
> Stellen Sie hierzu das charakteristische Polynom
> [mm]p_{4}(\lambda)[/mm] auf. Es hat u.a. die doppelte Nullstelle
> [mm]\lambda=[/mm] 2. Spalten Sie diese mit dem Horner Schema ab.
>  
>
>
>
>
> b) Geben Sie die allgemeine Lösung der
> Differentialgleichung y´ [mm]=\bruch{sin(x)}{cos(y)}[/mm]
>  
>
>
>
>
> Hallo,
>  
> Zur ersten Aufgabe (Teil a)
>  
> Was ist ein charakterischtisches Polynom?

Charakteristische Gleichung:

Die Dgl lautet [mm]4y''''-24y'''+51y''-44y'+12y=0[/mm]

Daraus die char. Gleichung: [mm]4\lambda^4-24\lambda^3+51\lambda^2-44\lambda+12=0[/mm]

>  Die Abspaltung mittels des Horner Schemas hab ich noch
> gemacht
>  Wenn es sich um eine doppelte Nullstelle handel wird das
> Horner Schema zweimal angewendet oder?
>  1x Horner Schema angewendet =
> [mm]4\lambda^{3}-16\lambda^{2}+19\lambda-6[/mm]
>  2x Horner Schema angewendet = [mm]4\lambda^{2}-8\lambda+3[/mm]
>  
> [mm]p_{4}(\lambda)=(x-2)^{2}*(4\lambda^{2}-8\lamda+3)[/mm] ist das
> meine Lösung?

Schlecht aufgeschrieben, aber stimmig, wenn auch noch nicht fertig.

Schneller als dieses komische Hornerschema ist doch wohl die Polynomdivision: [mm](4\lambda^4-24\lambda^3+51\lambda^2-44\lambda+12):(\lambda-2)^2=(4\lambda^4-24\lambda^3+51\lambda^2-44\lambda+12):(\lambda^2-4\lambda+4)=4\lambda^2-8\lambda+3[/mm]

Also [mm][mm] 4\lambda^4-24\lambda^3+51\lambda^2-44\lambda+12=(\lambda-2)^2\cdot{}(4\lambda^2-8\lambda+3)$" )^2\cdot{}(4\lambda^2-8\lambda+3)$"="" [/mm] src="http://teximg.matheraum.de/render?d=108&s=$4%5Clambda%5E4-24%5Clambda%5E3%2B51%5Clambda%5E2-44%5Clambda%2B12%3D%28%5Clambda-2%29%5E2%5Ccdot%7B%7D%284%5Clambda%5E2-8%5Clambda%2B3%29$" [mm] )^2\cdot{}(4\lambda^2-8\lambda+3)"=""> [/mm]

Der Faktor <span class="math">[daumenhoch]

Gut!

>  
> mfg

Gruß

schachuzipus


Bezug
                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Di 09.08.2011
Autor: RWBK

Danke für die schnelle antwort. Kann das sein das am Ende deines Beitrags etwas verrutscht ist?

mfg

Bezug
                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Di 09.08.2011
Autor: schachuzipus

Ach, geht das Verstümmeln wieder los.

Irgendwas stimmt mal wieder nicht ...

Ätzend, in der Vorschau sah es alles korrekt dargestellt aus!

Ich hatte die Lösung zu Aufgabe 2 bestätigt und noch dazu geschrieben, dass man die beiden Integrationskonstante, die bei der unbestimmten Integration entstehen, direkt zu einer zusammenfasst, indem man sie nur rechterhand vergibt:

[mm]\int{\cos(y) \ dy} \ = \ \int{\sin(x) \ dx}[/mm]

[mm]\Rightarrow \sin(y) \ = \ -\cos(x)+c[/mm]

Gruß

schachuzipus



Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 09.08.2011
Autor: RWBK

Aso ein Frage hätte ich dann nochmal zu der Teilaufgabe a). Warum ist die denn noch nicht ganz fertig , bzw. was fehlt?

mfg

Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Di 09.08.2011
Autor: schachuzipus

Ah, das ist auch teilweise verstümmelt ...


> Aso ein Frage hätte ich dann nochmal zu der Teilaufgabe
> a). Warum ist die denn noch nicht ganz fertig , bzw. was
> fehlt?

Du kannst weiter zerlegen.

Die char. Gleichung lautet:

[mm]cp(\lambda)=4\lambda^4-24\lambda^3+51\lambda^2-44\lambda+12[/mm]

Die doppelte NST [mm]\lambda=2[/mm] hast du vorgegeben, also Polynomdivision durch [mm](\lambda-2)^2[/mm] oder Horner oder wie auch immer zu deinem Ergebnis:

[mm]cp(\lambda)=(\lambda-2)^2\cdot{}(4\lambda^2-8\lambda+3)[/mm]

Das kannst du noch weiter zerlegen in [mm]cp(\lambda)=(2\lambda-1)(\lambda-2)^2(2\lambda-3)[/mm]

Wie sieht damit die Lösung der Ausgangsdgl aus?

>  
> mfg

Gruß

schachuzipus


Bezug
        
Bezug
Differentialgleichung: zur 2. Aufgabe
Status: (Antwort) fertig Status 
Datum: 11:50 Di 09.08.2011
Autor: Roadrunner

Hallo RWBK!


Die zweite Aufgabe sieht gut aus. [ok]


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de