www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung - Gebiet
Differentialgleichung - Gebiet < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung - Gebiet: Gebiet, Exaktheit
Status: (Frage) beantwortet Status 
Datum: 11:14 Mi 25.02.2015
Autor: Steffi91

Aufgabe
geg: y' = [mm] (1+x^2)(1+y^2) [/mm] x/y

In welchem einfach zusammenhängenden Gebiet ist die Differentialgleichung exakt?

Hallo! könnt ihr mir bei folgender Fragestellung helfen (die Aufgabe stammt aus einer alten Klausur, die ich als Vorbereitung gern verstehen und lösen möchte)?

Ich hätte gesagt, das Gebiet G muss stetig differenzierbar sein, und rot = 0, aber das trifft es wohl nicht...



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialgleichung - Gebiet: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Mi 25.02.2015
Autor: fred97


> geg: y' = [mm](1+x^2)(1+y^2)[/mm] x/y
>  
> In welchem einfach zusammenhängenden Gebiet ist die
> Differentialgleichung exakt?
>  Hallo! könnt ihr mir bei folgender Fragestellung helfen
> (die Aufgabe stammt aus einer alten Klausur, die ich als
> Vorbereitung gern verstehen und lösen möchte)?
>  
> Ich hätte gesagt, das Gebiet G muss stetig differenzierbar
> sein,

Das ist doch völliger Unsinn. G ist eine Menge !!!



> und rot = 0

Das ist dahin ge-rot(zt) ! Mit rot meinst Du wahrscheinlich die Rotation, aber von was ??



> , aber das trifft es wohl nicht...
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Zu den Begriffen: sei G [mm] \subseteq \IR^2 [/mm] ein Gebiet und $p,q:G [mm] \to \IR$ [/mm] seien stetig differenzierbar.

Dann ist die DGL

   (1) $p(x,y)+q(x,y)y'=0$

exakt  [mm] \gdw q_x=p_y [/mm] auf G.

Nun zur DGL

   (2) $y' =  [mm] (1+x^2)(1+y^2) [/mm]  x/y$.

Klar ist, dass für das gesuchte Gebiet gelten muss: y [mm] \ne [/mm] 0 für alle (x,y) [mm] \in [/mm] G.

Es gibt nun viele Möglichkeiten die Gl. in (2) in der Form (1) zu schreiben:

z.B.

  [mm] $-(1+x^2)(1+y^2)x+yy'=0$ [/mm]

Also mit [mm] p(x,y)=-(1+x^2)(1+y^2)x [/mm]  und q(x,y)=y. Dann ist die DGL aber auf keinem Gebiet exakt !

Es geht aber auch so:

  [mm] $-(1+x^2)x+\bruch{y}{1+y^2}y'$ [/mm]

Also mit [mm] p(x,y)=-(1+x^2)x [/mm] und [mm] q(x,y)=\bruch{y}{1+y^2} [/mm]

Dann ist die Gleichung aber exakt !

Hast Du die Aufgabenstellung exakt wiedergegeben ?

Wenn ja, so ist die Aufgabe völlig bescheuert !

FRED


Bezug
                
Bezug
Differentialgleichung - Gebiet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 Mi 25.02.2015
Autor: Steffi91

Hallo,

ja, die Frage ist exakt so formuliert worden.

Danke für deine Antwort, leicht nachvollziehbar, und ich denke mit der entsprechenden Umformung für die Exaktheit ist das auch umfassend beantwortet. Den Exaktheitstest hatte ich schon im Hinterkopf, dass es sich jedoch so unterschiedlich verhält, wusste ich nicht, Danke nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de