www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung 1.Ordn.
Differentialgleichung 1.Ordn. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 1.Ordn.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:58 Mo 04.06.2012
Autor: ggT

Aufgabe
Es sei auf $U = [mm] \IR^{2}$ [/mm] die Differentialgleichung $y' = sin(x)y + 2e^(-cosx)$ gegeben.
Löse für diese Differentialgleichung die Anfangswertaufgabe [mm] $y(x_{0}) [/mm] = [mm] y_{0}$ [/mm] für

(a) [mm] $x_{0} [/mm] = 0, [mm] y_{0} [/mm] = 2$
(b) [mm] $x_{0} [/mm] = 0, [mm] y_{0} [/mm] = 0$
(c) [mm] $x_{0} [/mm] = [mm] \bruch{\pi}{2}, y_{0} [/mm] = 2$

Hey,
da ich mich schon den halben Tag mit Differentialgleichungen rumschlage, habe ich nun noch eine dritte Aufgabe hier, bei der ihr mir hoffentlich helfen könnt.
Es scheitert im Prinzip schon beim Umstellen, da ich nicht weiß wie ich das ganze trennen soll bzw. wie ich y und x voneinander isolieren kann und auf verschiedene Seiten bringe.

        
Bezug
Differentialgleichung 1.Ordn.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 04.06.2012
Autor: leduart

Hallo
loese zuerst die homogene Dgl, dann such eine part. Loesung der inhomogenen oder mach Variation der konstanten.
Gruss leduart

Bezug
                
Bezug
Differentialgleichung 1.Ordn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Mo 04.06.2012
Autor: ggT

Ja und wie fange ich an sie zu lösen?
Muss ich dann zuerst wieder x und y trennen oder mit Substitution?

Bezug
                        
Bezug
Differentialgleichung 1.Ordn.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Mo 04.06.2012
Autor: notinX

Hallo,

> Ja und wie fange ich an sie zu lösen?
>  Muss ich dann zuerst wieder x und y trennen oder mit
> Substitution?

Trennen der Veränderlichen führt bei der homogenen Gleichung zum Ziel.

Gruß,

notinX

Bezug
                                
Bezug
Differentialgleichung 1.Ordn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:18 Di 05.06.2012
Autor: ggT

Habe irgendwie gerade nen Brett vorm Kopf.

Also ich habe:
$y' = sin(x)*y + [mm] 2*e^{-cos(x)}$ [/mm]

Dann setze ich für $y'$ wieder [mm] $\bruch{dy}{dx}$ [/mm] und versuche die Trennung der Variablen durchzuführen:
$dy = [mm] sin(x)*y+2*e^{-cos(x)}dx$ [/mm]

Wie bekomme ich nun y isoliert bzw. auf die linke Seite?

Bezug
                                        
Bezug
Differentialgleichung 1.Ordn.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Di 05.06.2012
Autor: Diophant

Hallo,

wie meine Vorredner schon gesagt haben: du solltest zuerst eine homogene Lösung berechnen. Dazu löst man die zugehörige homogene DGL

y'=sin(x)*y

durch Trennung der Variablen.

Vielleicht solltest du auch in deinen Unterlagen nochmals nachschlagen, was die Begriffe homogen bzw. inhomogen im Zusammenhang mit Differentialgleichungen bzw. DGL-Systemen bedeuten.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de