Differentialgleichung 1.Ordnun < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:45 Mo 27.06.2005 | Autor: | holg47 |
Hallo!
Mir ist die Aussage des Satzes von Piccard-Lindelöf nicht ganz klar. Also ich verstehe nicht ganz, wann eine Dgl. die Vorraussetzungen des Satzes erfüllt.
Liege ich da richtig, wenn ich sage:
Die Funktion f(x,y)= y erfüllt die Vorraussetzungen, da f(x,y) = y einer Lipschitz-Bedingung mit L=1 erfüllt.
Die Funktion f(x.y)= [mm] y^2/3 [/mm] erfüllt die Vorraussetzungen nicht, da die Funktion [mm] y^2/3 [/mm] nur lokal einer Lipschiz-Bedingung genügt?????????
Vielen Dank!!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:00 Mo 27.06.2005 | Autor: | SEcki |
> Hallo!
>
> Mir ist die Aussage des Satzes von Piccard-Lindelöf nicht
> ganz klar. Also ich verstehe nicht ganz, wann eine Dgl. die
> Vorraussetzungen des Satzes erfüllt.
Aber sonst ist der Rest klar?
> Die Funktion f(x,y)= y erfüllt die Vorraussetzungen, da
> f(x,y) = y einer Lipschitz-Bedingung mit L=1 erfüllt.
Lipschitz bzgl. y heisst ja: es existiert L, so daß [m]||f(x,y)-f(x,y')||\le L||y-y'||[/m] für alle y, y' in der Menge. Lokal Lipschitz heisst, daß es für alle [m](x,y)[/m] eine Umgebung dieses Punktes gibt, so daß sie Lipschitz stetig bzgl. y dort ist. (zB ist [m]f(x,y)=y^2[/m] lokal Lipschitz, aber nicht global)
Zu deiner Funktion: ja, dieses ist sogar global Lipschitz mit L=1. richtig so.
> Die Funktion f(x.y)= [mm]y^2/3[/mm] erfüllt die Vorraussetzungen
> nicht, da die Funktion [mm]y^2/3[/mm] nur lokal einer
> Lipschiz-Bedingung genügt?????????
Wieso die vielen '?'? Genau, es ist olakl Lipschitz stetig. Warum? Es ist eine quadratische Funktion, und lojkal kann man die durch den Schrabnkensatz abschätzen, also findet man so eine Konstante L - aber sicher nicht überall. ann kann man lokal den Satz von Picard-Lindelöf anwenden - und den dann immer weiter fortsetzen ... (Manchmal kommt es blos auf die Norm an - mit einer anderen Norm kann man es global zu einer Lipschitz-Bedingung drücken.)
Letztes Beispiel: [m]y^{\bruch{3}{3}}[/m] ist in 0 nicht lokal Lipschitz (hoff ich mal ...) - die Ableitung geht hier auch gegen Unendlich in 0 - und tatsächlich gibt es dann zwei Lösungen.
SEcki
|
|
|
|