www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung Variable
Differentialgleichung Variable < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 16.11.2009
Autor: andi7987

Aufgabe 1
Folgende Beispiele:

y' = (y + 2) ²

Aufgabe 2
  2x² y' = y²

Wie mache ich da weiter?

Aufgabe 2 habe ich so angefangen:

2x² [mm] \bruch{dy}{dx} [/mm] = y²

Wenn ich dann mit dx überall multipliziere dann kommt folgendes:

2 x² dy = y² dx / : 2x², y²

[mm] \bruch{dy}{y²} [/mm] = [mm] \bruch{dx}{2*x²} [/mm]

das ganze dann integrieren!

dabei kommt dann raus:

[mm] -\bruch{1}{y} [/mm] = [mm] -\bruch{1}{2*x} [/mm] + c

Ich bin mir nicht sicher, ob das richtig ist und was ich da weiter machen muss?


Aufgabe 1: Und hier habe ich überhaupt noch keine Zugang!

Bitte um eure Hilfe!

        
Bezug
Differentialgleichung Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mo 16.11.2009
Autor: schachuzipus

Hallo andi7987,

> Folgende Beispiele:
>  
> y' = (y + 2) ²
>   2x² y' = y²
>  Wie mache ich da weiter?
>  
> Aufgabe 2 habe ich so angefangen:
>  
> 2x² [mm]\bruch{dy}{dx}[/mm] = y²
>  
> Wenn ich dann mit dx überall multipliziere dann kommt
> folgendes:
>  
> 2 x² dy = y² dx / : 2x², y²
>  
> [mm]\bruch{dy}{y^2}[/mm] = [mm]\bruch{dx}{2*x^2}[/mm]

Mache die Exponenten mit dem Dach ^ (links neben der 1) sonst werden sie nicht angezeigt!

>  
> das ganze dann integrieren!
>  
> dabei kommt dann raus:
>  
> [mm]-\bruch{1}{y}[/mm] = [mm]-\bruch{1}{2*x}[/mm] + c [ok]

Das ist für [mm] $y\neq [/mm] 0$ richtig!

Löse den Krempel nun nach $y=y(x)$ auf, schließlich ist das die gesuchte Lösungsfunktion.

Gib nachher unbedingt den Definitionsbereich an, bedenke, dass Lösungen auf einem zusammenhängenden Interval def. sind.

Bedenke auch, dass [mm] $y\equiv [/mm] 0$ ebenfalls die Ausgangsdgl. löst, das solltest du bei den Lösungen auch mit angeben ...

>  
> Ich bin mir nicht sicher, ob das richtig ist und was ich da
> weiter machen muss?

Nach $y$ auflösen ...

>  
>
> Aufgabe 1: Und hier habe ich überhaupt noch keine Zugang!

Auch da ist Trennung der Variablen ein probates Mittel

[mm] $y'=(y+2)^2$ [/mm]

[mm] $\underbrace{\Rightarrow}_{y\neq -2} \frac{1}{(y+2)^2} [/mm] \ dy \ = \ 1 \ dx$

Nun wieder auf beiden Seiten integrieren und auf den Def.bereich achten!

Falls es Stress mit [mm] $\int{\frac{1}{(y+2)^2} \ dy}$ [/mm] gibt, substituiere $u:=y+2$ ...

>  
> Bitte um eure Hilfe!


Gruß

schachuzipus

Bezug
                
Bezug
Differentialgleichung Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mo 16.11.2009
Autor: andi7987

Vielen Dank bisher:

Also zur Aufgabe 2:

[mm] 2x^{2} [/mm] y' = [mm] y^{2} [/mm]

Jetzt weiter: von

[mm] -\bruch{1}{y^{2}} [/mm] = [mm] -\bruch{1}{2*x} [/mm] + c / *y

=> -1 = [mm] (-\bruch{1}{2*x} [/mm] + c) * y

=> [mm] \bruch{-1}{-\bruch{1}{2*x }+c} [/mm] = y

=> y = [mm] \bruch{c}{2*x} [/mm]

Ist das noch richtig? Und ist das jetzt das Endergebnis?

Vielen Dank!


Bezug
                        
Bezug
Differentialgleichung Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Mo 16.11.2009
Autor: MathePower

Hallo andi7987,

> Vielen Dank bisher:
>  
> Also zur Aufgabe 2:
>  
> [mm]2x^{2}[/mm] y' = [mm]y^{2}[/mm]
>  
> Jetzt weiter: von
>  
> [mm]-\bruch{1}{y^{2}}[/mm] = [mm]-\bruch{1}{2*x}[/mm] + c / *y
>  
> => -1 = [mm](-\bruch{1}{2*x}[/mm] + c) * y
>  
> => [mm]\bruch{-1}{-\bruch{1}{2*x }+c}[/mm] = y
>  
> => y = [mm]\bruch{c}{2*x}[/mm]
>  
> Ist das noch richtig? Und ist das jetzt das Endergebnis?


Die letzte Umformung stimmt nicht.

Die vorhergehende Lösung

[mm]y=\bruch{-1}{-\bruch{1}{2*x }+c}[/mm]

stimmt jedoch.


>  
> Vielen Dank!

>


Gruss
MathePower  

Bezug
                                
Bezug
Differentialgleichung Variable: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Do 19.11.2009
Autor: andi7987

Ich möchte mich bei allen recht herzlich bedanken!

Ich habe das Problem lösen können!

Wenn es interessiert poste ich die Lösung in den nächsten Tagen!?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de