www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung eines
Differentialgleichung eines < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung eines: Schaltkreises
Status: (Frage) beantwortet Status 
Datum: 20:49 Sa 24.05.2014
Autor: Coxy

Aufgabe
Für den skizzierten Schaltkreis gilt die Differentialgleichung
[mm] LI``+RI`+\bruch{1}{C}=U`(t) [/mm]
Hierbei sind die Induktivität L=2000H, der Widerstand R=25 Ohm und die Kapazität
C=2F bekannt.
a) Löse die homogene Differentialgleichung i.e U(t)`=0
für die Anfangswerte I(0)=Io und I`(0)=I´o

Also ich habe bisher mathematische DGL gelöst.
Deswegen fällt es mir etwas schwer hier durch zu blicken.
Ich habe ja
[mm] LI''+RI'+\bruch{1}{C}=0 [/mm]
Kann ich das quasi als
[mm] y''+y+'\bruch{1}{C}= [/mm] 0
auffassen?
Mir fehlt so der Ansatz wie ich hier vorgehen soll.
Ich bin für jeden Tipp dankbar.

        
Bezug
Differentialgleichung eines: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Sa 24.05.2014
Autor: abakus


> Für den skizzierten Schaltkreis gilt die
> Differentialgleichung
> [mm]LI''+RI'+\bruch{1}{C}=U'(t)[/mm]
> Hierbei sind die Induktivität L=2000H, der Widerstand
> R=25 Ohm und die Kapazität
> C=2F bekannt.
> a) Löse die homogene Differentialgleichung i.e U(t)'=0
> für die Anfangswerte I(0)=Io und I'(0)=I´o
> Also ich habe bisher mathematische DGL gelöst.
> Deswegen fällt es mir etwas schwer hier durch zu
> blicken.
> Ich habe ja
> [mm]LI''+RI'+\bruch{1}{C}=0[/mm]
> Kann ich das quasi als
> [mm]y''+y+'\bruch{1}{C}=[/mm] 0
> auffassen?

Hallo,
Natürlich kannst du die gegebene Gleichung durch L teilen und anschließend I in y umbenennen.
Du kannst auch den entstehenden Quotient R/L anders nennen (z.B. a oder irgendein anderer Buchstabe), und du kannst auch 1/LC als b bezeichen.
Die (homogene) Gleichung lautet dann 
[mm]y''+a*y'+b=0[/mm].
Gruß Abakus

> Mir fehlt so der Ansatz wie ich hier vorgehen soll.
> Ich bin für jeden Tipp dankbar.

Bezug
        
Bezug
Differentialgleichung eines: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 So 25.05.2014
Autor: fred97


> Für den skizzierten Schaltkreis gilt die
> Differentialgleichung
> [mm]LI''+RI'+\bruch{1}{C}=U'(t)[/mm]
>  Hierbei sind die Induktivität L=2000H, der Widerstand
> R=25 Ohm und die Kapazität
>  C=2F bekannt.
>  a) Löse die homogene Differentialgleichung i.e U(t)'=0


[mm]LI''+RI'+\bruch{1}{C}=U'(t)[/mm]

ist eine lineare Dgl. 2. Ordnung. Die zugehörige homogene Gleichung lautet:

[mm]LI''+RI'=0[/mm]

Ob der Aufgabensteller das wohl so meint ?? Denn laut Aufgabensteller wird für die homogene Gleichung nur gefordert $U'(t)=0$. Meint er dann die Gl.


(*) [mm]LI''+RI'+\bruch{1}{C}=0[/mm] ?

(*) ist aber keine homogene Gleichung !

FRED

>  für die Anfangswerte I(0)=Io und I'(0)=I´o





>  Also ich habe bisher mathematische DGL gelöst.
>  Deswegen fällt es mir etwas schwer hier durch zu
> blicken.
>  Ich habe ja
>  [mm]LI''+RI'+\bruch{1}{C}=0[/mm]
>  Kann ich das quasi als
>  [mm]y''+y+'\bruch{1}{C}=[/mm] 0
>  auffassen?
>  Mir fehlt so der Ansatz wie ich hier vorgehen soll.
>  Ich bin für jeden Tipp dankbar.


Bezug
        
Bezug
Differentialgleichung eines: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 So 25.05.2014
Autor: Sax

Hi,

tatsächlich lautet die Differentialgleichung
$ [mm] L*I''+R*I'+\bruch{1}{C}*I=U'(t) [/mm] $
(und damit wird sie für U'=0 auch homogen).

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de