www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung finden
Differentialgleichung finden < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung finden: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:22 Sa 21.05.2011
Autor: Roffel

Aufgabe
Die folgenden Funktionen sind Lösungen von DG's. Finden sie passende DG's.
(Hinweis : auf der rechten Seite der DGen sollten wieder x auftauchen.)

a) [mm] x(t)=e^{-3t}-t^{3}+t^{2}-\bruch{2}{3}*t+\bruch{2}{9} [/mm]

Hi
ich bräuchte mal eine genaue Vorgehensweie erläutert an diesem Beispiel... hab den Prinzip noch nicht raus.... und hab nur als Lösung da stehen:
[mm] x'=-3x-3t^{3} [/mm] und auf die Lösung komme ich nicht...

das einzige was ich bisher weiß das ich auf jedenfall einmal Ableiten muss, aber mehr auch nicht leider :)

da steht dann bei mir :

[mm] x'=-3e^{-3t}-3t^{2}+2t-\bruch{2}{3} [/mm] aber wie mach dann weiter? wie macht man das ganz allgemein?

Wäre nett wenn mir jemand helfen könnte...

Grüße

        
Bezug
Differentialgleichung finden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Sa 21.05.2011
Autor: fencheltee


> Die folgenden Funktionen sind Lösungen von DG's. Finden
> sie passende DG's.
>  (Hinweis : auf der rechten Seite der DGen sollten wieder x
> auftauchen.)
>  
> a) [mm]x(t)=e^{-3t}-t^{3}+t^{2}-\bruch{2}{3}*t+\bruch{2}{9}[/mm]
>  Hi
>  ich bräuchte mal eine genaue Vorgehensweie erläutert an
> diesem Beispiel... hab den Prinzip noch nicht raus.... und
> hab nur als Lösung da stehen:
>  [mm]x'=-3x-3t^{3}[/mm] und auf die Lösung komme ich nicht...
>  
> das einzige was ich bisher weiß das ich auf jedenfall
> einmal Ableiten muss, aber mehr auch nicht leider :)
>  
> da steht dann bei mir :
>  
> [mm]x'=-3e^{-3t}-3t^{2}+2t-\bruch{2}{3}[/mm] aber wie mach dann
> weiter? wie macht man das ganz allgemein?

jetzt fällt hier ja auf, dass hier viele terme aus der ausgangsgleichung auftauchen

hier bietet sich ja nun an, -3 auszuklammern, damit der e-term schonmal wie oben ist:

[mm] x'=-3*(e^{-3t}+t^2-\frac{2}{3}t+\frac{2}{9}) [/mm]

wie man sieht, tauchen hier alle terme aus x auf, bis auf [mm] -t^3 [/mm]
den "mogelt" man jetzt dazu

[mm] x'=-3*(e^{-3t}\red{-t^3+t^3}+t^2-\frac{2}{3}t+\frac{2}{9}) [/mm]
die roten terme ergeben ja jetzt zusammen 0, also haben wir nix falsch gemacht ;-)

der [mm] t^3 [/mm] stört aber nun und wird aus der klammer geschmissen

[mm] x'=-3*(e^{-3t}\red{-t^3}+t^2-\frac{2}{3}t+\frac{2}{9})\red{-3t^3} [/mm]

da die grosse klammer nun x entspricht ergibt sich
[mm] x'=-3*x-3t^3 [/mm]

>  
> Wäre nett wenn mir jemand helfen könnte...
>  
> Grüße

gruß tee

Bezug
                
Bezug
Differentialgleichung finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Sa 21.05.2011
Autor: Roffel

Danke danke danke!
das war mal eine "lupenreine" Erklärung, jetzt hab sogar ich es verstanden...
Vielen Dank :)

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de