www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung lösen
Differentialgleichung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung lösen: Tipp, Rückfrage, Idee, Hilfe
Status: (Frage) beantwortet Status 
Datum: 17:48 So 21.01.2018
Autor: Dom_89

Aufgabe
Bestimme die allg. Lösung der Differentialgleichung

[mm] y`(x)+4xy(x)=xe^{-x^2} [/mm]

Hallo,

bei der o.g. Aufgabe bin ich mir nicht sicher, welche Lösungsmethode anzuwenden ist!?

Könnt ihr mir da auf die Sprünge helfen und ggf. auch einmal erklären, woran man erkennen kann, wann man welche Methode anwenden muss?

Vielen Dank für die Hilfe

        
Bezug
Differentialgleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 21.01.2018
Autor: Diophant

Hallo,

> Bestimme die allg. Lösung der Differentialgleichung

>

> [mm]y'(x)+4xy(x)=xe^{-x^2}[/mm]
> Hallo,

>

> bei der o.g. Aufgabe bin ich mir nicht sicher, welche
> Lösungsmethode anzuwenden ist!?

Ich habe sie gerade innerhalb von 2, 3 Minuten mittels Ermitteln der Lösung der homogenen DGL (per TDV) und anschließender Variation der Konstanten gelöst.

> Könnt ihr mir da auf die Sprünge helfen und ggf. auch
> einmal erklären, woran man erkennen kann, wann man welche
> Methode anwenden muss?

Das ist ein weites Feld, da solltest du eher ein Lehrbuch befragen. Es gibt ein paar einfache Typen von Differenzialgleichungen, bei denen man sich (bis auf die eigentliche Integration, also die Frage, ob diese geschlossen möglich ist) sicher sein kann, sie mit einer bestimmten Methode zu lösen.

Die vorliegende DGL ist eine inhomogene lineare DGL 1. Ordnung. Damit weiß man schon einmal, dass man die zugehörige homogene DGL per Trennung der Variablen lösen kann. Danach bietet sich bei DGLen 1. Ordnung die Variation der Konstanten an, das ist aber auch ein Stück weit Geschmack- bzw. Gewohnheitssache.


Gruß, Diophant

Bezug
                
Bezug
Differentialgleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mo 22.01.2018
Autor: Dom_89

Hallo,

vielen Dank für die schnelle Antwort!

Für die allgemeine Lösung [mm] y_{h} [/mm] der homogenen DGL habe ich nun [mm] y_{h} [/mm] = [mm] c*e^{-2x^2} [/mm] raus.

Bei der speziellen Lösung [mm] y_{s} [/mm] der inhomogenen DGL komme ich momentan an folgender Stelle nicht mehr weiter:

ln|y| = [mm] -\bruch{1}{2}*e^{-x^2}-2x^2+C [/mm]

Ich bin mir nicht sicher, wie ich hier genau vorgehen muss, um nur y zu erhalten!? Bin ich mit meiner bisherigen Lösung überhaupt auf dem richtigen Weg?

Vielen Dank

Bezug
                        
Bezug
Differentialgleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mo 22.01.2018
Autor: Diophant

Hallo,

> Hallo,

>

> vielen Dank für die schnelle Antwort!

>

> Für die allgemeine Lösung [mm]y_{h}[/mm] der homogenen DGL habe
> ich nun [mm]y_{h}[/mm] = [mm]c*e^{-2x^2}[/mm] raus.

Ja, das passt. [ok]

> Bei der speziellen Lösung [mm]y_{s}[/mm] der inhomogenen DGL komme
> ich momentan an folgender Stelle nicht mehr weiter:

>

> ln|y| = [mm]-\bruch{1}{2}*e^{-x^2}-2x^2+C[/mm]

>

> Ich bin mir nicht sicher, wie ich hier genau vorgehen muss,
> um nur y zu erhalten!? Bin ich mit meiner bisherigen
> Lösung überhaupt auf dem richtigen Weg?

Da muss dir irgendwo ein Rechenfehler unterlaufen sein (ich weiß auch gar nicht, wo hier der Logarithmus herkommt?).

Mit [mm] y=C*e^{-2x^2} [/mm]

bekommt man

[mm] y'=C'*e^{-2x^2}-4x*C*e^{-2x^2} [/mm]

Wenn man damit in die allg. DGL eingeht, führt das letztendlich auf die Gleichung

[mm] C'=x*e^{x^2} [/mm]

Rechne es nach und integriere dann obige Gleichung per Substitution.


Gruß, Diophant

Bezug
                                
Bezug
Differentialgleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Do 25.01.2018
Autor: Dom_89

Hallo,

nun hat alles so funktioniert, wie es sollte - hatte mich zwischendrin etwas verrannt.

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de