www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung mit der
Differentialgleichung mit der < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung mit der: Lösungsformel
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 23.04.2008
Autor: knooby

Aufgabe
Man löse die DGL

hi,

ich habe folgende aufgabe:
[mm] x\*y'+5y=x^4 [/mm]  mit y(1)=4
Nun will ich das mit der allgemeinen Lösungformel lösen
[mm] yallg=({\integral_{x}^{x0}{b(t)*e^{\integral_{x0}^{t}{a(s)ds}} dt+c+y0}})*e^{-\integral_{x0}^{x}{a(s)}} [/mm]

ich dachte dann das ich meine Ausgangsgleichung
so umstelle   [mm] y'+\bruch{5y}{x}=x^{-5} [/mm]

und dann für [mm] b(t)=t^{-5} [/mm]
und für [mm] a(s)=\bruch{5}{s} [/mm]

einsetze.

Das alles ausgerechnet ergbit dann bei mir [mm] x^{-4}+\bruch{3}{x^5} [/mm]


Stimmt das? oder habe ich einen Fehler beim umstellen gemacht?
Danke im Vorraus
mfg knooby

        
Bezug
Differentialgleichung mit der: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 23.04.2008
Autor: MathePower

Hallo knooby,

> Man löse die DGL
>  hi,
>  
> ich habe folgende aufgabe:
>  [mm]x\*y'+5y=x^4[/mm]  mit y(1)=4
>  Nun will ich das mit der allgemeinen Lösungformel lösen
> [mm]yallg=({\integral_{x}^{x0}{b(t)*e^{\integral_{x0}^{t}{a(s)ds}} dt+c+y0}})*e^{-\integral_{x0}^{x}{a(s)}}[/mm]
>  
> ich dachte dann das ich meine Ausgangsgleichung
> so umstelle   [mm]y'+\bruch{5y}{x}=x^{-5}[/mm]

Es muss doch heissen:

[mm]y'+\bruch{5}{x}\y=x^{\red{4-1}}[/mm]

>  
> und dann für [mm]b(t)=t^{-5}[/mm]
>  und für [mm]a(s)=\bruch{5}{s}[/mm]
>  
> einsetze.
>  
> Das alles ausgerechnet ergbit dann bei mir
> [mm]x^{-4}+\bruch{3}{x^5}[/mm]
>  
>
> Stimmt das? oder habe ich einen Fehler beim umstellen
> gemacht?
>  Danke im Vorraus
>  mfg knooby

Gruß
MathePower

Bezug
                
Bezug
Differentialgleichung mit der: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Mi 23.04.2008
Autor: knooby

Danke schonmal

ha den ti falsch benutzt. :-(

[mm] \bruch{x^9-1}{9x^5} [/mm]

so könnte das nun stimmen?

mfg knooby

Bezug
                        
Bezug
Differentialgleichung mit der: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 23.04.2008
Autor: MathePower

Hallo knooby,

> Danke schonmal
>  
> ha den ti falsch benutzt. :-(
>  
> [mm]\bruch{x^9-1}{9x^5}[/mm]

Immer noch nicht.

Da hast Du wohl die falsche Anfangsbedingung eingesetzt.

Mit der Anfangsbedingung [mm]y\left(1\right)=4[/mm] kommt etwas anders heraus.

Der rot markierte Teil stimmt nicht:

[mm]y\left(x\right)=\bruch{x^9\red{-1}}{9x^5}[/mm]

>  
> so könnte das nun stimmen?
>  
> mfg knooby

Gruß
MathePower

Bezug
                                
Bezug
Differentialgleichung mit der: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Mi 23.04.2008
Autor: knooby

+35 muss hin... Habe beim neu ausrechnen die 4 vergessen.


wenn ich jetzt eine Gleichung habe y'+4x*y=-8x Dann kürzt sich ja leider nicht das e^ weg, weil sich kein ln bildet. Wie löse ich so eine Gleichung mit der Lösungsformel einfach?

Bezug
                                        
Bezug
Differentialgleichung mit der: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 23.04.2008
Autor: MathePower

Hallo knooby,

> +35 muss hin... Habe beim neu ausrechnen die 4 vergessen.

[ok]

>  
>
> wenn ich jetzt eine Gleichung habe y'+4x*y=-8x Dann kürzt
> sich ja leider nicht das e^ weg, weil sich kein ln bildet.
> Wie löse ich so eine Gleichung mit der Lösungsformel
> einfach?

Die Lösungsformel gilt ja allgemein für solche DGL's.

Setze einfach diese Funktionen in die Lösungsformel ein:

[mm]a\left(x\right)=4x[/mm]
[mm]b\left(x\right)=-8x[/mm]

Gruß
MathePower

Bezug
                                                
Bezug
Differentialgleichung mit der: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Mi 23.04.2008
Autor: knooby

y'+4x*y=-8x mit y(o)=3

Zwischenergebnisse

[mm] e^{2x^2} [/mm]
[mm] e^{-2x^2} [/mm]

[mm] \integral_{0}^{x}{-8x*e^{2x^2}+3}=5-2+e^{2x^2} [/mm]

draus folgt dann

[mm] (5-2+e^{2x^2})*e^{-2x^2} [/mm]



dann bekomme ich raus

[mm] \bruch{5}{(e^x^{2})^2}-2 [/mm]
Das kommt mir etwas spanisch vor...>

Bezug
                                                        
Bezug
Differentialgleichung mit der: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 23.04.2008
Autor: Martinius

Hallo knooby,

mit Variation der Konstanten komme ich auf folgende spezielle Lösung:

$y = -2 + [mm] 5*e^{-2*x^2}$ [/mm]


LG, Martinius

Bezug
                                                                
Bezug
Differentialgleichung mit der: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:48 Mi 23.04.2008
Autor: knooby

Könntest du das auch mal mit versuchen mit der Lösungsformel zu lösen?

Bezug
                                                                        
Bezug
Differentialgleichung mit der: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Mi 23.04.2008
Autor: Martinius

Hallo knooby,

wenn Du mir vorher erklärst was man da für b(t) und a(s) einsetzen soll... Ich sehe diese Lösungsformel zum ersten mal.

LG, Martinius

Bezug
                                                                                
Bezug
Differentialgleichung mit der: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Mi 23.04.2008
Autor: knooby

he he die ist eigentlich garnicht so schlecht

a(s)=4s
b(t)=-8x

aber mein ergebnis [mm] \bruch{5}{(e^x^{2})^2}-2 [/mm] ist wohl das selbe wie das von dir $y = -2 + [mm] 5*e^{-2*x^2}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de