www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Differentialquotient
Differentialquotient < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialquotient: Anstieg bestimmen
Status: (Frage) beantwortet Status 
Datum: 13:41 Do 10.02.2005
Autor: michaelw

Hallo,
ich habe schon wieder ein Problem was wohl eigentlich recht einfach ist, wo ich aber nicht mehr weiß wie ich es lösen kann. Ich soll von der Funktion
f(x) = [mm] 2x^{3} [/mm] + 1 an der Stelle [mm] x_{0} [/mm] den Anstieg mit Hilfe des Differentialquotienten bestimmen. Also:

[mm] \limes_{h\rightarrow 0} = \bruch{f(x + h) - f(x)}{h}[/mm]

also hab ich f(x) mal da eingesetzt:

[mm] \limes_{h\rightarrow 0} = \bruch{2*(x+h)^3 + 1 - 2x^3 + 1}{h}[/mm]

Ja, und wenn h gegen 0 geht, kommt doch was unendlich großes raus, weil ja durch fast 0 geteilt wird. Woher nehm ich dann den Anstieg? Helft mir bitte mal auf die Sprünge!!


        
Bezug
Differentialquotient: Weiter rechnen ...
Status: (Antwort) fertig Status 
Datum: 13:54 Do 10.02.2005
Autor: Loddar

Hallo Michael!

Der Ansatz ist doch schon ganz gut [daumenhoch] .


> also hab ich f(x) mal da eingesetzt:
> [mm]\limes_{h\rightarrow 0} \ = \ \bruch{2*(x_0+h)^{3} + 1 - \red{(}2x_0^{3} + 1\red{)}}{h}[/mm]

Und hier bist Du noch nicht fertig.
Multpliziere doch mal den Term [mm] $2*(x_0+h)^3$ [/mm] aus und fasse anschließend den Zähler zusammen. Dann kürzt sich nämlich irgendwann das $h$ größtenteils weg.

Bitte aufpassen:
Du hattest noch einige Klammern vergessen (siehe oben farbig).


Wie sieht denn dann Dein Ergebnis aus?

Gruß
Loddar


Bezug
                
Bezug
Differentialquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 Do 10.02.2005
Autor: michaelw

Danke! War wirklich sehr einfach dann, aber ich dachte binomische Formel dritten Grades und so das kürzt sich niemals irgendwie weg, aber scheinbar eben doch! Es kommt natürlich raus:

[mm] = \bruch{6x^2h+6xh^2+2h^3}{h}[/mm]

[mm] = 6x^2 + 6xh+2h^2[/mm]

[mm] = 6x^2[/mm]

Grüße,
Michael


Bezug
                        
Bezug
Differentialquotient: saubere Schreibweise
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Do 10.02.2005
Autor: Loddar

Hallo Michael!

Ergebnis stimmt [daumenhoch] !!


Kleiner Hinweis:

> [mm]= \bruch{6x^2h+6xh^2+2h^3}{h}[/mm]
> [mm]= 6x^2 + 6xh+2h^2[/mm]

Spätestens hier solltest Du wieder etwas sauberer schreiben:
[mm] $\limes_{h\rightarrow 0} 6x_0^2 [/mm] + [mm] 6x_0*h [/mm] + [mm] 2h^2 [/mm] \ = \ [mm] 6*x_0^2$ [/mm]

Da sonst die Gleichheit natürlich nicht gegeben ist:
[mm] $6x^2 [/mm] + [mm] 6xh+2h^2 [/mm] \ [mm] \red{\not=} [/mm] \ [mm] 6x^2$ [/mm]


Loddar


Bezug
                                
Bezug
Differentialquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Do 10.02.2005
Autor: michaelw

Ja, ok, hatte das limes nur vorhin weggelassen weil es immer soviel Klick Arbeit ist und oftmals Zeichen verkehrt gesetzt sind. Auf dem Papier hab ich das natürlich hingeschrieben!

Wie kann man bei limes das "gegen 0" erreichen? Wenn ich einfach "0" hinschreibe dann zeigt er das nicht an, muss ich das evtl. ausschreiben?

Danke nochmals

Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de