www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Differentialrechnungen
Differentialrechnungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnungen: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 20.11.2012
Autor: sublim

Aufgabe 1
Aufgabe1
Gegeben ist die Funktion f mit f(x)=[mm] \bruch{x^3+2x}{x+3} [/mm]

a) Geben Sie die Definitionsmenge der Funktion f an und bestimmen Sie die ersten beiden Ableitungen von f.


Aufgabe 2
b) Zeigen Sie, dass f genau eine Polstelle hat.


Aufgabe 3
c) Unter welchem Winkel schneidet der Graph von f die y-Achse?


Aufgabe 4
d) Bestimmen Sie die Gleichung der Asymptote der Funktion f.


Aufgabe 5
e) Zeigen Sie, dass die Funktion f kein lokales Maximum besitzt.


Aufgabe 6
g) Begründen Sie das die Funktion f im Intervall [0;1] eine Wendestelle besitzt.


Aufgabe 7
h) Bestimmen Sie die Gleichung der Tangente an den Graphen von f im Punkt P(-1|f(-2)).


Diese Aufgaben sind zum Üben und Vorbereitung auf  das Abi. Ich bin leider nicht mehr ganz im Stoff.


a) Definitionsmenge.. wie ging das noch mal? Ich würde sagen: D={R}
(Quotientenregel)
f'(x)=[mm] \bruch{-x^3+3x^2+4x+6}{(x+3)^2} [/mm]
f''(x)=[mm] \bruch{(-3x^2+6x+4)*(x^2+6x+9)-(-x^3+3x^2+4x+6)*(2x+6)}{(x+3)^4} [/mm]

b) Verstehe nicht wie ich herangehen sollte.
c) Ebenfalls
d) ..
e) ..
Notwendige Bedingung Extrema f'(x)=0
f'(x)=[mm] \bruch{-x^3+3x^2+4x+6}{(x+3)^2} [/mm]=0
[mm] -x^3+3x^2+4x+6=0 [/mm]
x=?    

g) ..
h) ..

Ich freue mich über Tipps und Denkanstöße, wie ich das lösen kann.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialrechnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Di 20.11.2012
Autor: schachuzipus

Hallo sublim und erstmal herzlich [willkommenmr],


> Aufgabe1
>  Gegeben ist die Funktion f mit f(x)=[mm] \bruch{x^3+2x}{x+3}[/mm]
>  
> a) Geben Sie die Definitionsmenge der Funktion f an und
> bestimmen Sie die ersten beiden Ableitungen von f.
>  
> b) Zeigen Sie, dass f genau eine Polstelle hat.
>  
> c) Unter welchem Winkel schneidet der Graph von f die
> y-Achse?
>  
> d) Bestimmen Sie die Gleichung der Asymptote der Funktion
> f.
>  
> e) Zeigen Sie, dass die Funktion f kein lokales Maximum
> besitzt.
>  
> g) Begründen Sie das die Funktion f im Intervall [0;1]
> eine Wendestelle besitzt.
>  
> h) Bestimmen Sie die Gleichung der Tangente an den Graphen
> von f im Punkt P(-1|f(-2)).
>  
> Diese Aufgaben sind zum Üben und Vorbereitung auf  das
> Abi. Ich bin leider nicht mehr ganz im Stoff.
>  
>
> a) Definitionsmenge.. wie ging das noch mal?

Nachschlagen!

> Ich würde
> sagen: D={R}

Ich nicht. Was ist mit $x=-3$?

Du musst überlegen, für welche(s) [mm] $x\in\IR$ [/mm] der Funktionsterm nicht definiert ist und darfst diese(s) x nicht mit in den Definitionsbereich aufnehmen.

>  (Quotientenregel)
>  f'(x)=[mm] \bruch{-x^3+3x^2+4x+6}{(x+3)^2}[/mm] [notok]

Das solltest du mal vorrechnen ...

>  f''(x)=[mm] \bruch{(-3x^2+6x+4)*(x^2+6x+9)-(-x^3+3x^2+4x+6)*(2x+6)}{(x+3)^4}[/mm]

Habe ich nicht kontrolliert, da $f'$ falsch ist.

Bei richtigem Zusammenfassen erhöht sich aber die Potenz im Nenner mit jeder Ableitung um 1!

>  
> b) Verstehe nicht wie ich herangehen sollte.

Erstmal nachschlagen, was eine Polstelle ist ...

>  c) Ebenfalls

In welchem Punkt schneidet der Graph von $f$ die y-Achse?

Dann gibt es eine nette Formel, mithilfe derer man den Schnittwinkel berechnen kann --> nachschlagen!

>  d) ..

Frage?

Nachschlagen, was eine Asymptote ist ...

>  e) ..
>  Notwendige Bedingung Extrema f'(x)=0
>  f'(x)=[mm] \bruch{-x^3+3x^2+4x+6}{(x+3)^2} [/mm]=0
>  
> [mm]-x^3+3x^2+4x+6=0[/mm]
>  x=?    

Leider ist $f'$ falsch, aber selbst beim richtigen $f'$ lassen sich die Nullstellen nur näherungsweise bestimmen, wenn ich das so auf die Schnelle richtig sehe ... (es gibt wohl nur eine reelle)

>
> g) ..
>  h) ..

Na, das ist herzlich wenig.

Du musst schon die Begriffe nachschlagen und wissen, was gemeint ist.

Die musst du dir erstmal auf die Platte ziehen, sonst kann das nicht klappen.

> Ich freue mich über Tipps und Denkanstöße, wie ich das
> lösen kann.

Wir können das gerne zusammen erarbeiten, aber jetzt musst du erstmal vorlegen (bzw. nachholen)


>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Differentialrechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 20.11.2012
Autor: sublim

Danke schon einmal für deine Hilfe.

a) Definitionsmenge.. wie ging das noch mal?

Nachschlagen!

> Ich würde
> sagen: D={R}

Ich nicht. Was ist mit ? x=-3
Du musst überlegen, für welche(s)  der Funktionsterm nicht definiert ist und darfst diese(s) x nicht mit in den Definitionsbereich aufnehmen.

Achso.. manchmal sieht man den Wald vor lauter Bäumen nicht.  Ja x=-3 Da man nicht durch 0 Teilen darf, so ist die Funktion für x=-3 nicht definiert.


zu Ableitung:

f'(x)=[mm] \bruch{f'(x)*g(x)-f(x)*g'(x)}{g(x)^2} [/mm]
f'(x)=[mm] \bruch{3x^2+2*(x+3)-x^3+2x}{(x+3)^2} [/mm]

>  
> b) Verstehe nicht wie ich herangehen sollte.

Erstmal nachschlagen, was eine Polstelle ist ...


Bei Polstellen handelt es sich um Definitionslücken der Funktion. Das müsste dann wieder x=-3 sein? Alles andere außer -3 ist definierbar, weshalb -3 die einzige Polstelle ist.
Wie kann ich das Mathematisch "zeigen, das es genau eine gibt"?
Polstelle/n:
x+3=0  x=-3


In welchem Punkt schneidet der Graph von  die y-Achse?

>Dann gibt es eine nette Formel, mithilfe derer man den Schnittwinkel berechnen kann --> nachschlagen!

(Ich verstehe nicht ganz. Welchen Schnittwinkel, wozu? Es ist ja ein Schnittpunkt an der y-Achse gesucht.) (Gelöst)

d)
g)
h)

Sollte machbar sein, beschäftige ich mich jetzt mit. Der Rest kommt später, wollte nur schon mal posten, während ich dies mache, danke noch mal für die Untersützung.

Bezug
                        
Bezug
Differentialrechnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Di 20.11.2012
Autor: Steffi21

Hallo,

a)
[mm] D=\{R\backslash-3\} [/mm]
b)
es gibt nur eine Polstelle x=-3, da die Funktion für x=-3 nicht definiert ist
c)
bei deiner Ableitung fehlen Klammern

[mm] f'(x)=\bruch{(3x^2+2)*(x+3)-(x^3+2x)}{(x+3)^2} [/mm]

die Funktion schneidet die die x-Achse an der Stelle x=0, über f'(0) bekommst du den Anstieg m, daraus dann [mm] m=tan(\alpha), [/mm] wobei [mm] \alpha [/mm] der Schnittwinkel mit der x-Achse ist, der Schnittwinkel mit der y-Achse sollte dann kein Problem sein, beide Achsen stehen senkrecht zueinander

Steffi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de