www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Differentiationsregeln
Differentiationsregeln < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiationsregeln: Frage
Status: (Frage) beantwortet Status 
Datum: 07:51 Do 14.07.2005
Autor: Aliosha2004

Hallo!

Ich habe ein Problem , ''komplizierte Funktionen zu differenzieren.
Zum Beispiel:

[mm] f(x)=(3*x^2-1)^3/(x-1)^2 [/mm]

Als (leider falschen) Lösungsweg habe ich zB probiert:

1) Auf den Zähler die Kettenregel anwenden;d.h. [mm] g(x)=y=3*x^2-1 [/mm]
und [mm] h(y)=y^3 [/mm] ergibt verkettet : [mm] 18*x*(3*x^2-1)^2 [/mm]

2)Auf den Nenner ebenfalls Kettenregel anwenden: g(x)=y=x-1
und [mm] h(y)=y^2 [/mm] ergibt verkettet : 2*x-2

3)Der so entstandene Bruch wäre meiner Meinung nach bereits die fertige Ableitung, ist aber falsch!

Wo irre ich mich ?

P.S. das ist die richtige Lösung lt.Buch:

[mm] f'(x)=(3*x^2-1)^2*(12*x^2-18*x+2)/(x-1)^3 [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Differentiationsregeln: Quotientenregel !!!
Status: (Antwort) fertig Status 
Datum: 08:02 Do 14.07.2005
Autor: Loddar

Hallo aliosha,

[willkommenmr] !!


> [mm]f(x)=(3*x^2-1)^3/(x-1)^2[/mm]

> 1) Auf den Zähler die Kettenregel anwenden; d.h. [mm]g(x)=y=3*x^2-1[/mm]
> und [mm]h(y)=y^3[/mm] ergibt verkettet : [mm]18*x*(3*x^2-1)^2[/mm]
>  
> 2) Auf den Nenner ebenfalls Kettenregel anwenden:
> g(x)=y=x-1 und [mm]h(y)=y^2[/mm] ergibt verkettet : 2*x-2


Die Einzelableitungen von Nenner und Zähler sind jeweils richtig, aber ...


... für die Ableitung von Brüchen (bzw. gebrochen-rationalen Funktionen) mußt Du die MBQuotientenregel anwenden:

[mm] $\left( \ \bruch{f}{g} \ \right)' [/mm] \ = \ [mm] \bruch{f'*g-f*g'}{g^2}$ [/mm]

Wenn Du nun also die entsprechenden Terme in diese Formel (unbedingt merken!) einsetzt, erhältst Du auch Deine vorgegebene Lösung.



[aufgemerkt] Ein weiterer Tipp:

Die Ableitung des Nenners nicht ausmultiplizieren, sondern als Produkt belassen mit $2*(x-1)_$, dann kannst Du nämlich noch wunderbar kürzen.
Am Ende den Term [mm] $\left(3x^2-1\right)^2$ [/mm] ausklammern.


Kommst Du nun weiter?

Gruß
Loddar


Bezug
                
Bezug
Differentiationsregeln: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:25 Do 14.07.2005
Autor: Aliosha2004

Hallo Loddar!

zuerst vielen Dank für deine Hilfe!

leider finde ich keine Lösung wie ich auf den Term

[mm] 18*x*(3*x^2-1)^2/2*(x-1) [/mm]

jetzt die Quotientenregel anwenden soll.

Schliesslich ist [mm] 18*x*(3*x^2-1)^2 [/mm] wieder eine verkettete Funktion....
(wie finde ich die Ableitung dazu-habe es mit ausmultiplizieren versucht aber das führt in eine Sackgasse..??

mfg

Aliosha2004


Bezug
                        
Bezug
Differentiationsregeln: In Formel einsetzen ...
Status: (Antwort) fertig Status 
Datum: 10:49 Do 14.07.2005
Autor: Loddar

Hallo Aliosha!


Hast Du Dir mal die Formel für die MBQuotientenregel angesehen?


Auf unsere Aufgabe $y \ = \ [mm] \bruch{\left(3x^2-1\right)^3}{(x-1)^2}$ [/mm] übertragen, heißt das doch:

$f \ := \ [mm] \left(3x^2-1\right)^3$ $\Rightarrow$ [/mm]    $f' \ = \ [mm] 3*\left(3x^2-1\right)^2*6x [/mm] \ = \ [mm] 18x*\left(3x^2-1\right)^2$ [/mm]

und

$g \ := \ [mm] (x-1)^2$ $\Rightarrow$ [/mm]    $g' \ = \ 2*(x-1)$

[mm] $g^2 [/mm] \ = \ [mm] \left[(x-1)^2\right]^2 [/mm] \ = \ [mm] (x-1)^4$ [/mm]


Und diese einzelnen Terme nun in o.g. Formel einsetzen und dann zusammenfassen, kürzen usw.


Gruß
Loddar


Bezug
                                
Bezug
Differentiationsregeln: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 14.07.2005
Autor: Aliosha2004

Nochmal Hallo!

möchte mich bedanken-habs endlich kapiert wie es geht!

"Auch ein blindes Huhn findet einmal ein Korn.."

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de